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Abstract
The increasing production and processing of image data, especially in remote sensing applications, has raised concerns 
regarding image security, privacy, and efficient retrieval as it is most widely used in sensitive applications. In this article, to 
address these challenges, a novel privacy-preserving content-based image retrieval (PPCBIR) system has been proposed that 
leverages a trusted edge computing layer that performs image encryption and feature extraction tasks, reducing the process-
ing overload on user devices and bolstering system efficiency. Feature extraction harnesses the MobileNetV2 deep learning 
model, which enables the extraction of intricate visual features, enhancing image retrieval accuracy in the presence of high 
inter-class similarity in the dataset. Furthermore, the system has been deployed in a distributed storage environment, ensuring 
image availability even during server outages. The proposed system also incorporates trusted third-party auditing (TPA) as a 
means to verify the integrity of images during the storage and retrieval processes. The presence of TPA plays a crucial role 
in maintaining the reliability and trustworthiness of the stored images. The proposed system achieves a high mean Average 
Precision (mAP) of 0.889, surpassing existing PPCBIR systems. Overall, the system prioritizes image retrieval performance, 
privacy, availability, and integrity, making it suitable for processing remote sensing image data efficiently and securely.

Keywords Remote sensing images · CBIR · Privacy preservation · Edge computing · Distributed cloud · Third party 
auditing

Introduction

In recent years, the exponential growth in digital media and 
image-based services has led to a significant increase in the 
production and processing of image data. Among various 
image types, remote sensing images have gained prominence 
due to their widespread use in applications such as environ-
mental monitoring, urban planning, and agriculture (Wen 
et al. 2023). Remote sensing images, however, pose unique 
challenges due to their high inter-class similarity, requiring 
advanced feature extraction methods to discern complex pat-
terns and structures. To retrieve relevant information from 

vast collections of remote sensing images, Content-based 
Image Retrieval (CBIR) has emerged as a crucial approach 
(Kapoor et  al. 2021). CBIR enables users to search for 
images based on their content, such as texture, color, and 
shape, rather than relying solely on textual descriptions or 
tags. This method is particularly useful in the context of 
remote sensing images, where visual features play a crucial 
role in determining image similarity and relevance.

Alongside the need for efficient image retrieval, the con-
fidentiality and integrity of remote-sensing images must be 
ensured. With the widespread adoption of cloud comput-
ing for flexible and cost-effective storage, concerns about 
image security and privacy have become paramount (Qin 
et al. 2018; Tanwar et al. 2018). The sensitive nature of 
remote sensing data requires robust security measures to 
protect against unauthorized access, tampering, or data 
breaches. Secure CBIR schemes can be classified into image 
encryption-based CBIR schemes and feature encryption-
based CBIR schemes (Ma et al. 2022). The former involves 
users uploading encrypted images and a searchable index 
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to the cloud where the features are extracted from the 
encrypted image for similarity estimation in Top K search 
(Tanwar et al. 2022). In contrast, the latter involves the user 
uploading the encrypted image and the feature vector of 
the original image. As the features are extracted from the 
original image, more detailed and quality features can be 
extracted thereby providing better retrieval performance. 
However, these approaches are limited to a single central-
ized server strategy and do not address server outages and 
other issues faced when using a single storage setup. To 
address the aforementioned challenges, this paper proposes 
a comprehensive privacy-preserving image retrieval system 
specifically designed for remote sensing images and distrib-
uted cloud storage environments. The system integrates deep 
learning-based feature extraction methods with secure stor-
age, retrieval techniques, secret image sharing, and an edge 
computing layer.

The proposed system employs advanced deep-learning 
networks such as MobileNetV2 to extract complex and 
discriminative features from remote-sensing images, ena-
bling accurate and meaningful image retrieval. To safeguard 
the confidentiality and integrity of the images, encryption 
techniques are applied, ensuring that only authorized users 
can access and manipulate the data. The system utilizes a 
hybrid encryption model that combines spatial and frequency 
domain encryption techniques, enhancing both security and 
computational efficiency. In addition to secure image storage, 
the system incorporates secret image sharing (SIS) to ensure 
image privacy and availability in a distributed storage envi-
ronment. This method divides the original image into mul-
tiple encrypted messages or "shadows", for reduced storage 
utilization by avoiding data redundancy, and allocates them 
to different cloud servers. Even in the event of server outages, 
the original image can be reconstructed from an arbitrary col-
lection of shadows, ensuring continuous image availability.

Furthermore, considering the resource constraints on 
user devices and the computational overload posed by deep 
learning feature extraction, an edge computing layer is intro-
duced. The nearest edge node acts as a proxy for the user, 
performing tasks such as image encryption, feature extrac-
tion, and image retrieval processes on behalf of the user. 
This edge layer reduces the cost of data transfer to the cloud, 
minimizes data exposure, and improves overall computa-
tional efficiency, speed, and reliability. Figure 1 depicts the 
planned system's overall layout.

Major contributions in this article are,

• For better retrieval accuracy, a Feature encryption-based 
CBIR scheme involving MobilenetV2-based deep learn-
ing feature extraction techniques

• To reduce the processing overload of the user, a trusted 
edge computing layer is proposed which performs 
encryption and feature extraction tasks

• To ensure availability, the distributed cloud environment 
is utilized

• To achieve data integrity in PPCBIR, TPA has been 
deployed

The rest of the article is structured as follows. "Related 
work" section discusses the related works. The background 
information required to understand the proposed system has 
been discussed in "Background" section. "Proposed sys-
tem" section briefs the proposed EdgeShield for PPCBIR. 
"Experimental results" section shows the experimental setup 
and results. Security and retrieval performance analysis are 
detailed in "Performance analysis" section. "Conclusion and 
future works"section summarizes the article with the conclu-
sion and future work.

Related work

This section has been split into 2 subsections as follows: 
Privacy-preserving image retrieval techniques and Trusted 
storage in the cloud.

Privacy‑preserving image retrieval

This subsection discusses the existing PPCBIR methods pro-
posed in recent years. A secure content-based image retrieval 
system based on the Local Binary Pattern (LBP) and Bag of 

Fig. 1  General System Model



2277Earth Science Informatics (2024) 17:2275–2302 

Words (BoW) model has been proposed by Xia et al. (2021). 
The image content is protected by the big-block permuta-
tion, 3 × 3 small block permutation within big blocks, pixel 
permutation within 3 × 3 small blocks, and polyalphabetic 
cipher. The use of polyalphabetic cipher improves confiden-
tiality and causes no degradation in terms of retrieval accu-
racy since the substitution tables are generated by the order-
preserving encryption. Without any interaction from the 
data owner, the cloud server computes the LBP histograms 
directly from the encrypted big blocks. The feature vector 
is then calculated using the local LBP histograms and the 
BOW model, yielding effective retrieval accuracy. Despite 
the system's robustness and highly efficient image retrieval, 
it has a large computational overhead and constrained 
availability. Qin et al. (2014) proposed SecSIFT, a high-
performance privacy-preserving Scalar Invariant Feature 
Transform (SIFT) feature detection system. The proposed 
system distributes the computation procedures of SIFT to a 
set of independent, cooperative cloud servers, and keeps the 
outsourced computation procedures as simple as possible, 
thus enabling implementation with practical computation 
and communication complexity. A privacy‐preserving image 
retrieval in the distributed environment was proposed by 
Zhou et al. (2022), where a gateway can encrypt the digital 
images that are collected from smart devices and upload the 
encrypted images to multiple cloud servers. The authorized 
researcher can use similarity retrieval to identify images 
that are comparable to the query by searching through these 
encrypted images. The suggested method resolves the issue 
of maintaining image availability while also guaranteeing 
image security and similarity search on encrypted images. 
They created a two-stage image encryption system based on 
a combination of image encryption that supports similarity 
searches on encrypted domains and private image sharing, 
which significantly increased image security and availability 
while concurrently preserving retrieval accuracy.

A PPCBIR scheme not only efficiently retrieves images 
based on the primitive visual image feature but simultane-
ously imposes security aspects to its transmission. In the 
system proposed by Sengar and Kumar (2022), The owner 
used a logistic map to generate an encrypted image data-
base and an encrypted image feature database, which were 
then moved to a centralized database. The user then uses 
the same method to construct the encrypted query image 
feature vector and sends it to a central database. To find a 
few of the most similar encrypted images that will be sent 
to the user side, a similar image search has been conducted 
across the encrypted feature image database in a centralized 
database. The user will now decode those received images 
using the key they obtained from the owner side to obtain 
the final result. A secure CBIR in the Cloud with Key Con-
fidentiality (Li et al. 2020) implements kNN for searching 
in a dataset. It makes the supposition that each entity in this 

system can be partially trusted. The k-means approach is 
used to streamline the descriptors of massive databases with 
over 10,000 images in order to speed up search performance. 
In the searching phase, trapdoor verification is also used 
to make sure the trapdoor is valid. The technology is very 
adaptable and offers improved security and speedy recovery.

The field of CBIR for satellite images has witnessed sig-
nificant advancements in recent years. However, there is a 
continuous need for improvement in retrieval accuracy and 
computational complexity. High spatial resolution remote 
sensing images come with distinct layers, clear textures, 
and rich spatial information. Mingchang et al. (2019) pro-
posed a method to realize scene-level classification of high 
spatial resolution images by extracting the depth features 
of high-resolution remote sensing images using a residual 
learning network (ResNet), and low-level features, includ-
ing color moment features and gray-level co-occurrence 
matrix features. They were then used to construct various 
scenes semantic features of high-resolution images and cre-
ated a classification model with the training support vector 
machine (SVM). A similar image detection method involv-
ing multi-level features has been proposed by Zhang et al. 
(2019) using ground objects’ multi-features, such as color, 
texture, and shape. Though this method has a high accuracy 
rate, if the non-cloud area is highly reflective, irregular, and 
as smooth as the cloud area, it is easily misidentified as the 
cloud area by the proposed detection method. Sunitha and 
Sivarani (2021) introduced an efficient CBIR system that 
leverages Weighted Brownian Motion-based Monarch But-
terfly Optimizations (WBMMBO). The proposed approach 
incorporates various steps, including contrast enhance-
ment using the Adjusted Intensity-based Variant of Adap-
tive Histograms Equalization (AIVA), feature extraction 
(LPDF, DCD, BoVW, SF, and BRIEF), feature selection 
with WBMMBO, similarity computation using MSSIM, 
and threshold-centered checking. Preliminary results indi-
cate notable enhancements in precision and recall rates, 
along with improved computational efficiency. Traditional 
convolutional neural network (CNN) models have exhibited 
limitations in terms of training time and high-dimensional 
feature outputs In the field of content-based remote sensing 
image retrieval. To address this challenge, a study by Hou 
et al. (2020) explores the use of the MobileNets model and 
proposes a fine-tuning approach by adjusting the dimensions 
of the final fully connected layer to learn low-dimensional 
representations. Experimental results demonstrate that the 
MobileNets model achieves superior retrieval performance 
compared to other CNN models, such as ResNet152, in 
terms of retrieval accuracy and training speed. This offers 
a simple yet effective solution to improve retrieval perfor-
mance. One disadvantage is that the MobileNets-based 
CBIR approach has relatively high computational require-
ments, especially during the fine-tuning process.
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TDHPPIR is an entirely novel triplet deep CNN hashing-
based privacy-preserving image retrieval method put forth 
by Zhang et al. (2020) to enhance the efficiency of image 
retrieval securely in the cloud. A triplet deep CNN model 
was proposed to simultaneously learn visual representations 
and hash codes for higher-quality hash code learning. In 
addition, a unique hierarchical bit-scalable hash code-based 
S-Tree called the H2S-Tree is created to speed up hashing-
based image search. Though image search is efficient and 
image retrieval accuracy is high, it has limited robustness 
against adversarial attacks.

Cloud data integrity verification

This subsection is dedicated to analyzing the existing meth-
ods to secure cloud data integrity. Kumar et al. ( 2021) 
proposed a model that utilizes lightweight cryptographic 
systems and hashing techniques to ensure data security and 
integrity when auditing outsourced data from cloud service 
providers. The proposed system focuses on data reliability 
through correctness verification and error recovery analy-
sis. It also emphasizes the time efficiency of the system 
compared to other models. Additionally, they claim resist-
ance against known cryptanalytic attacks and showcase the 
secure and highly efficient performance of the proposed 
system, through extensive compression techniques. Garg 
et al. (2023) proposed an effective and reliable data integrity 
verification scheme based on Schnorr signatures. Schnorr 
signatures offer the advantage of linear signature verifica-
tion equations and the ability to perform batch verification 
on multiple blocks. While existing schemes rely on Boneh 
Lynn and Shacham (BLS) or RSA signature schemes, the 
proposed scheme stands out for its high efficiency and secu-
rity. Experimental results demonstrate that the proposed 
scheme significantly reduces verification computation 
costs. Similarly, an effective public auditing protocol has 
been proposed by Bhavyasree et al. (2021), where the sys-
tem involves a third-party auditor (TPA) that evaluates the 
precision of cloud data without the need for complete data 
retrieval or adding extra online load for users and servers. 
The proposed system ensures data confidentiality, integrity, 
and proper storage. The user encrypts file blocks using AES 
algorithms, generates MD-5 hash values for each block, and 
creates an AES signature for the entire file. The cloud server 
stores the encrypted file blocks. When a user requests TPA 
auditing, the TPA directly obtains the encrypted files, gener-
ates MD-5 hash values, and compares its AES signature with 
the user's signature. The validation process determines if the 
data is intact and not compromised. The verified data integ-
rity status is then communicated back to the user, providing 
assurance and trust in the security of cloud data.

In third-party auditing systems, various popular hashing 
algorithms are utilized to ensure data integrity and security. 

The widely used MD5 generates a 128-bit hash value but is 
vulnerable to collision attacks, limiting its suitability for cryp-
tographic applications. For enhanced security, SHA-512 from 
the SHA-2 family is preferred, providing a robust 512-bit hash 
value with resistance against collisions. Perceptual hashing 
techniques, such as visual hashing, are pivotal in multime-
dia content analysis, generating compact hashes that capture 
image similarity for tasks like search, duplicate detection, and 
copyright protection. Another prominent hashing algorithm is 
BLAKE2 (Kumar et al. 2017), known for its high performance 
and security. An enhanced version of the original BLAKE 
function, BLAKE2 offers various output sizes and finds appli-
cations in data integrity verification, password hashing, and 
message authentication. Additionally, the emerging BLAKE3 
algorithm proves to be an excellent choice. It combines innova-
tive ideas from different hashing algorithms, providing excep-
tional performance, robust security, and resistance against 
various cryptographic attacks. With its speed, versatility, and 
ability to generate hash values of variable lengths, BLAKE3 is 
increasingly recognized as a favorable choice for ensuring data 
integrity and security in third-party auditing systems.

This literature survey explores recent advancements in 
Privacy-Preserving Content-Based Image Retrieval (PPCBIR) 
for remote sensing images and diverse strategies for ensuring 
data integrity in cloud computing, which are required in sensi-
tive areas such as the military. In PPCBIR, various approaches, 
including encryption-based security measures and deep learning 
techniques, prioritize image security while maintaining retrieval 
accuracy and efficiency. The survey highlights the importance 
of privacy in distributed environments and acknowledges ongo-
ing challenges, reflecting the dynamic landscape of the field. In 
data integrity for cloud computing, lightweight cryptography, 
efficient verification schemes, and public auditing protocols are 
discussed. Robust hashing algorithms like BLAKE-3 are rec-
ommended, addressing the evolving security requirements in 
cloud-based data storage and retrieval. This survey encompasses 
privacy, security, efficiency, and adaptability, addressing critical 
challenges in secure image retrieval and data integrity in cloud 
environments. From the literature survey done, it is vivid that 
distributed and secure remote sensing image retrieval is required 
in sensitive areas such as the military.

Background

This section provides the background technical information 
to understand the proposed system.

Hybrid image encryption

Over the past few decades, several encryption schemes 
have been proposed to address security concerns. However, 
these schemes often suffer from vulnerabilities such as time 



2279Earth Science Informatics (2024) 17:2275–2302 

inefficiency and weak security. The work of Shafique et al. 
(2021), aims to provide the highest level of security for digi-
tal data by incorporating chaos to scramble the rows and col-
umns of the plaintext image. Additionally, a noisy image is 
generated using a chaotic logistic map and carefully selected 
initial conditions based on thorough analysis.

The mathematical form of the logistic map:

Initial conditions:

To reduce encryption computational time, a Discrete Wave-
let Transform (DWT) is employed, focusing only on encrypt-
ing the low-frequency bands since they contain the major-
ity of the plaintext information. Their proposed encryption 
algorithm can successfully decrypt the plaintext image with 
minimal information loss, although the content of the plaintext 
image can still be visually perceived. Decryption is the same as 
encryption, done in reverse order. Our work uses this algorithm 
due to its low time complexity, without any compromise on the 
encryption strength, striking a balance between security and 
efficiency. Figure 2 depicts the flow of encryption.

Feature extraction using MobileNetV2 model

Image feature extraction is a technique used to capture relevant 
information and patterns from images (Rajath et al. 2023). It 
involves identifying distinctive attributes or characteristics 
that represent the visual content of an image. Traditional 
methods relied on manually designing and selecting features, 
but deep learning-based methods have revolutionized this 

Xi+1 = W ∗ Xi (1 − Xi) ∗ (2 + Xi)

X ⊆ (0, 1)

W ⊆ [1.42, 1.60)

field. Deep learning utilizes neural networks, particularly 
convolutional neural networks (CNNs), to automatically 
learn and extract features from images. These deep learning 
models can capture both low-level visual patterns and high-
level semantic representations, enabling superior performance 
in tasks such as image classification, object detection, and 
image recognition. By learning from large-scale datasets, 
deep learning models generalize well and produce transferable 
features applicable to various domains. This advancement in 
image feature extraction has greatly improved the capabilities 
of computer vision systems in analyzing and understanding 
visual data. In this article, the MobileNetV2 model has been 
used for feature extraction (Fig. 3).

Secret image sharing scheme

A robust method for image secret sharing that combines two 
k-out-of-n secret sharing schemes: i) Shamir's secret shar-
ing scheme, and ii) matrix projection secret sharing scheme 
(Bai 2006). The proposed technique enables the division of 
a colored secret image into n image shares (or shadows) and 
significantly reduces the size of shares, ensuring that:

 i. any k image shares (where k ≤ n) are adequate to 
reconstruct the secret image without any loss, and

 ii. any (k − 1) or fewer image shares do not contain suf-
ficient information to unveil the secret image.

For encrypted RGB images, SIS is performed on every 
channel separately. The resulting remainder matrices and 
shadows of the three channels are merged together.

To share an image N x N across n cloud servers, the 
image shares are constructed in the following steps: 
(Secret Sharing).

Fig. 2  Hybrid Image Encryption Model
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1. Split image I into constituent R, G, and B channels.
2. Construct n shadow vectors vi and reminder matrix R for 

each channel.

3. Merge the three channels of each shadow and the 
remainder matrix

4. Distribute each shadow to a unique cloud server and 
make the reminder matrix publicly known.

To reconstruct the image from the k shares, stored in any 
k cloud servers, the following steps are performed: (Secret 
recovery).

1. Construct a matrix B using any k shadows

2. Reconstruct the original image using the projection of 
matrix B and the remainder matrix R

This technique protects the secret image from loss, theft, or 
corruption and is proven to be dependable, secure, and efficient. 
This methodology has a number of advantages over existing 
image secret-sharing techniques, including the capacity to 

A = random matrix n × k

A_proj = (A(A’A)−1A’)(mod p)

R = ( I − A_proj )(mod p)

n linearly independent k × 1 random vectors Xi

shadow vi = (A × Xi)(mod p), for 1 ≤ i ≤ n

B = [ v1 v2 .. vk ]

B_proj = (B(BB)−1B)(mod p)

reconst_img = (B_proj + R)(mod p)

process data in real-time, a high rate of compression for image 
share sizes, and strong secret image protection.

Edge computing

Edge computing is a decentralized computing paradigm that 
brings computing resources closer to data sources and end-
users (Pérez et al. 2022). It addresses the need for real-time 
processing, low latency, and improved data privacy and secu-
rity. By processing and analyzing data at the network edge, 
edge computing reduces reliance on centralized cloud infra-
structure, enhances performance, and enables applications in 
areas such as IoT, autonomous vehicles, and smart cities. It 
offers localized computing capabilities, reduces data transfer 
and network congestion, and provides greater control over 
sensitive data. Edge computing is a complementary approach 
to cloud computing, enabling faster, privacy-enhanced, and 
low-latency processing at the edge of the network (Fig. 4).

Distributed cloud

Image storage in distributed cloud environments employs 
a master–slave architecture to provide scalable, fault-toler-
ant, and efficient solutions for managing image data. The 
master cloud acts as the central authority, managing storage 
metadata and maintaining records of relevant image infor-
mation. The image data is distributed across multiple slave 
cloud servers, allowing for seamless scalability as the data 
volume grows. Efficient retrieval and access are facilitated 
through parallel processing and retrieval from multiple serv-
ers simultaneously. The master–slave architecture provides 

Fig. 3  MobileNetV2 Model
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high availability, fault tolerance, and scalability, making it 
an ideal approach for managing and storing large volumes 
of image data in distributed cloud environments.

Third party auditor

Data corruption can be detected immediately by verifying 
the integrity of the data stored in the cloud. Third Party 
Auditor (TPA) acts as an independent and secure third-party 
verifier that ensures the integrity and authenticity of the data 
stored in the cloud, and provides an additional layer of secu-
rity and trust to the system. TPA verifies the integrity of the 
stored data by computing its hash value and comparing it 

with the hash value of the original data, stored in its secure 
database (Chakraborty et al. 2018).

Proposed system

The proposed system is composed of user, edge, and dis-
tributed cloud layers as shown in Fig. 5. A master–slave 
architecture is employed for the distributed cloud environ-
ment. The master manages and coordinates the storage in 
slave clouds. The system has adopted a feature-extraction-
based privacy-preserving CBIR scheme, the features of the 
uploaded image are extracted in the edge node and sent to the 

Fig. 4  The three-tier architec-
ture of edge computing

Fig. 5  Architecture Diagram
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master. Image encryption, decryption, and shadow genera-
tion are performed in the edge node. The Edge node acts as a 
proxy between the user and the cloud storage. Introducing an 
edge layer between the user and the cloud environment helps 
in reducing the computational overhead on the user end. 
Deep learning-based feature extraction techniques require 
high amounts of computing power to complete their tasks 
quickly to reduce the overall retrieval and storage latencies. 
Trusted edge nodes with high computing and GPU resources 
achieve reduced request latencies, meanwhile taking the 
load off the users and performing their tasks. During image 
upload storage, the edge node performs encryption over the 
user-uploaded image, performs shadow generation using 
SIS, extracts feature from the original uploaded image, and 
finally sends the feature vector, remainder matrix, and shad-
ows to the master cloud. The system's scalability is ensured 
through edge-based feature extraction for high-resolution 
images, minimizing data transmission to the cloud. Load 
balancing across edge nodes optimizes resource usage, pre-
venting congestion during concurrent high-resolution image 
queries. Dynamic scaling, monitored at the edge, adjusts 
resources based on user numbers or processing demands, 
ensuring optimal performance.

A master–slave architecture is instituted for the dis-
tributed cloud environment. The master cloud handles 
the incoming storage and retrieval requests with the help 
of stored meta-records of the uploaded images. The slave 
clouds are the actual storage units, each slave storing one 
shadow of the uploaded image. A TPA is employed to ensure 
the integrity of the shadows stored and detect attacks that 
intend to corrupt the data immediately. When the user 
uploads an image to store in the cloud environment, the 
uploaded image is sent to the edge node which performs the 
following functions, i) performs encryption over the user-
uploaded image. ii) performs shadow generation using SIS 
on encrypted user images. iii) Extract features from the user-
uploaded image. Then the edge node sends the feature vec-
tor, remainder matrix, and shadows to the master cloud. The 
master cloud creates a meta record for the new image stored 
and maintains the shadow references. The remainder matrix 
is stored in the master metaDB. The slave cloud stores the 
image shadow and updates its logs.

Later during image retrieval, the user uploads a query image 
and it is sent to the edge node where it extracts the query image 
features and sends it to the master cloud. The master cloud then 
performs the top K search based on the query image features, 
fetches the shadows from appropriate slave clouds, and the 
stored encrypted image is reconstructed. The top K similar 
reconstructed encrypted images are sent back to the edge node 
and it decrypts them and sends the results back to the user. 
During image retrieval, the edge node extracts the query image 
features and sends it to the master cloud. Upon receiving the 
reconstructed encrypted images from the master cloud, the 

edge node decrypts and sends them to the authorized requestor. 
The detailed modular information is given below.

Detailed modular design:

1. Ienc ← Encryption(I,  k1,  w1,  k2,  w2): This module 
encrypts the input image I using keys  k1,  w1,  k2,  w2 and 
outputs encrypted image  Ienc.

2. F ← Feature_Ext(I): This module extracts features from 
input image I using MobileNetV2 feature extraction 
method, and outputs a feature vector F.

3. R, Shadows[n] ← Shadow_gen(Ienc): In this module, n 
shadows are generated using the Secret Image Sharing 
(SIS) scheme, where the encrypted image  Ienc is pro-
vided as input. A remainder matrix R and n shadows are 
produced as output.

4. RecDB ← Sec_Storage(F, R, Shadows[n]): This module 
stores feature vector F, remainder matrix R, and n shad-
ows in the distributed cloud and creates a record  RecDB 
in the master cloud MetaDB. Shadows[n] are also sent 
to TPA for integrity verification.

5. Ienc[K] ← Sec_Retrieval(Iq): This module returns Top-K 
similar images  Ienc[K] from the cloud that is similar to 
query image  Iq. First, the feature vector F is extracted 
from  Iq and then F is compared with the stored feature 
vectors. Then shadows of top K images with the least 
Manhattan distance are fetched from the cloud. Encrypted 
images are reconstructed using those shadows as output.

6. I[K] ← Decryption(Ienc[K],  k1,  w1,  k2,  w2): The Top-K 
encrypted images  Ienc[K] are decrypted using the keys 
 k1,  w1,  k2,  w2 provided as input. The decrypted images 
I[K] are provided as output to the user.

The proposed system has been detailed in three sub-
sections based on the objectives: secure storage, secure 
retrieval, and attack resistance.

Secure image storage

In feature-extraction-based CBIR schemes, encryption, 
and feature extraction steps are performed earlier and the 
results are sent to the cloud for storage. The edge node 
on behalf of the user performs encryption over the user-
uploaded image, performs shadow generation using the 
Secret Sharing of SIS scheme, extracts features from the 
original uploaded image, and finally sends the feature vec-
tor, remainder matrix, and shadows to the master cloud. In 
the distributed cloud environment, the storage of uploaded 
images is a primary focus. To achieve space-efficient stor-
age, a secret image-sharing scheme is utilized to generate 
a remainder matrix and shadows. The SIS scheme gener-
ates n shadows, which are stored in n cloud servers, and 
out of which any k shadows can be used to reconstruct 
the image with negligible or no data loss. Meanwhile, a 
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third-party auditor (TPA) is employed to ensure the integ-
rity and authenticity of the shadows stored in slave clouds, 

Input: Feature vector f, Array of n shadows, Remainder matrix R
Output: Updated records in Master Cloud MetaDB

1. Create a record entry for the uploaded image in the MetaDB of the Master Cloud
2. Store Image id, feature vector f, Remainder matrix R, and references to each shadow
3. For every shadow:

a. Allocate the shadow to one cloud server
b. Verify the integrity of the stored shadow
c. Update shadow reference in the record entry

Input: Original shadows, Shadow references[]
Output: is_malicious[]

1. Calculate the hash value of all the shadows, Hash_val_orig[n], received from 
the master.

2. Hash_val_orig[i] = blake3_hash(shadow[i])
3. Store Hash_val in hash_db of TPA
4. Fetch the stored shadows from all the slaves.
5. Calculate the hash value of the received shadows, Hash_val_Stored[n], from the 

slaves.
6. For every shadow : 

     If Hash_val_orig[i] == Hash_val_Stored[i] : 
1. is_malicious[slave_i] = false

      else : 
1. is_malicious[slave_i] = true

7. Send the results, is_malicious, to the master

adding an additional layer of security and trust to the sys-
tem. Algorithm 1 explains the flow of image storage.

Algorithm 1  Secure Image Storage

When an image is uploaded, the master cloud receives 
the feature vector, remainder matrix, and n shadows. The 
feature vector and remainder matrix are used to create a new 
storage meta-record, which serves as the storage metadata 
for the image. This record includes the feature vector and 
references to the n shadows stored across multiple cloud 
servers. Simultaneously, the master cloud sends each shadow 
to the TPA and the corresponding slave cloud for storage. 
The slave clouds store the shadows and confirm their suc-
cessful storage to both the master and TPA. The TPA verifies 
the integrity of each shadow by computing its hash value 

and comparing it with the original hash value stored in its 
secure database. Algorithm 2 demonstrates the verification 
process by TPA.

• If all shadows pass the integrity verification, the master 
cloud stores the storage meta-record, signifying the suc-
cessful storage of the image.

• If the TPA identifies any malicious activity from a slave 
cloud, indicating tampering or compromise of a shadow, 
the master invokes the recovery service.

Algorithm 2  Integrity Verification By TPA
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By combining the SIS scheme, distributed storage across 
slave clouds, and involvement of a TPA, this system ensures 
secure, efficient, and distributed storage of images while 
maintaining data integrity. The TPA's independent verifi-
cation provides an additional layer of trust, safeguarding 
against malicious activities and enhancing the overall secu-
rity of the system.

Secure image retrieval

Secure image search involves retrieving encrypted images 
similar to a query image while ensuring data integrity and 
security. The process includes two main steps: Top K search 
and Image reconstruction. When an authorized requester 
queries the edge node with a query image, the features of 
the query image are extracted and sent to the master cloud 
for similarity estimation. The master cloud estimates the 
similarity by computing the Manhattan distance between 

the query feature vector and stored feature vectors to identify 
the top-K similar images. The K shadows and remainder 
matrix of these images are retrieved for encrypted image 
reconstruction using the Secret Recovery of SIS scheme. 
Simultaneously, the third-party auditor (TPA) is involved 
in integrity verification. The master fetches shadows from 
three available slave clouds and sends the slave cloud IDs to 
the TPA. The TPA verifies the integrity of the fetched shad-
ows by comparing their hashes with the original shadows' 
hashes stored in its hash database. If a malicious slave cloud 
or integrity violation is detected, another shadow is fetched, 
and parallel recovery is initiated. The K-reconstructed 
encrypted images are then securely sent back to the request-
ing edge node. The edge node then performs image decryp-
tion and sends the decrypted results to the requester. This 
combined approach ensures secure image retrieval, integrity 
verification through TPA, and privacy preservation in a dis-
tributed cloud environment.

1. Extract the feature vector q from the query image Q 
2. Calculate the Manhattan distance between q and the feature vectors of stored  
images fi

Manhattan (A, B) = Σi  | Ai - Bi |
3. Filter the top K images with the least Manhattan distance 
4. For every similar image in top-K: 

a. Retrieve any k shadows of the image from the total n shadows
b. Verify the integrity of the retrieved shadows using TPA
c. Reconstruct the encrypted image from the k shadows and the stored 
Remainder matrix R  

5. Return K reconstructed encrypted images

Input: Query image Q
Output: Top K similar images (Encrypted)

Algorithm 3  Top – K Image Search
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Fig. 6  Attack mitigation and recovery

Docker-compose to deploy the distributed cloud environ-
ment. Docker allows us to build a network of master and 
slave clouds. To evaluate the real-time performance of the 
system, we deployed on to AWS EC2 cloud service, which 
hosts Docker. The network of master and slave clouds 
deployed using Docker behaves similarly to real-world 
cloud servers. Tensorflow is used for employing pre-trained 
MobileNetV2 for feature extraction.

Dataset description

We used the Northwestern Polytechnical University's 
(NWPU) NWPU-RESISC45 dataset, a publicly accessible 
benchmark for Remote Sensing Image Scene Classification 
(RESISC). There are 700 images in each of the 45 scene 
classifications in this dataset's 31,500 total images. With the 
use of various benchmark datasets, including PatternNet and 
UC Merced Land Use, the proposed study has been simu-
lated. Datasets are listed in Table 1.

Image storage results

Secure image storage flow is depicted in Fig. 7. The user 
uploads the image to be stored along with the encryption 
keys via the user interface, as shown in Fig. 8. The user 
request is directed to the nearest edge node, where features 
of the image are extracted and the image is encrypted. 
Through the SIS scheme, the shadows and remainder 

Attack mitigation and recovery system

In the event of an attack triggered by one of the slaves during 
the storage, the master flags the malicious slave and initi-
ates the slave recovery mechanism as shown in Fig. 6. The 
recovery mechanism terminates the malicious slave. A new 
slave is created and the shadow is stored in the new slave. 
The integrity of the shadow stored in the new slave is veri-
fied, and the meta-record is updated and stored in the mas-
ter meta-db. The recovery mechanism then performs data 
migration from the uncorrupted backup of the malicious 
slave to the new slave.

In the case of an attack during image retrieval, the mitiga-
tion and retrieval are similar. Here, as soon as a slave cloud 
is detected to be malicious, a shadow from another slave 
cloud is fetched and the recovery mechanism is executed 
in parallel. Overall query request time is unaffected. This 
provides the security and availability of the data to the user.

Experimental results

Experimental setup

The proposed work is implemented in Python, where Flask 
API is used for developing the edge node and cloud serv-
ers. ReactJS is used for building the frontend, to allow the 
users to interact with the system. We used Docker and 
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matrix of the encrypted image are generated. The edge 
node sends the feature vector, remainder matrix, and 5 
shadows to the master cloud for storage. The master cloud 
then stores the remainder matrix in it and one shadow 
each, in 5 slave clouds. Master cloud then creates and 
stores a meta DB record with the image ID, feature vec-
tor, reference to the remainder matrix stored in the master, 
and shadow-slave references. Figure 9 shows the resulting 
master meta records and slave log records created.

Fig. 8  Uploading an image

Table 1  Datasets description Dataset Class Image number Images per 
class

Sources

NWPU-RESISC45 45 31,500 700 Google Earth Imagery
PatternNet 38 30400 800 Google Earth Imagery
UC Merced Land Use 21 2100 100 USGS National Map 

Urban Area Imagery

Fig. 7  Working flow of image storage

Secure image retrieval results

An authorized requestor with the appropriate encryption key, 
uploads a query image via the user interface, as shown in 
Figs. 10 and 11. The user query request is directed to the 
nearest edge node, where the features of the query image 
are extracted and sent to the master cloud. In the master 
cloud, similarity estimation is performed by computing the 
Manhattan distance between the query features and stored 
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and retrieval time analysis are briefly investigated and 
presented.

Image encryption security analysis

In this subsection, we have shown that the applied image 
encryption algorithm is attack-resistant for remote-sensing 
images. Both histogram and correlation analysis show the 
secureness of the encrypted image.

Histogram analysis

The pixel distribution of any image can be observed by the 
histogram analysis (Shafique et al. 2021). Figure 12a shows 
the pixel distribution in different channels of the original 
and the encrypted image. For a strong encryption technique, 
the histogram of the ciphertext image should be uniform 

Fig. 9  The stored master meta-record and slave logs

Fig. 10  Working flow of image retrieval

feature vectors. Then the image IDs of top K (K = 10) similar 
images with the smallest Manhattan distance are identified. 
Then for every similar image, the remainder matrix from 
the master and 3 shadows from any three available slave 
clouds are retrieved. The stored encrypted image is recon-
structed using the SIS scheme. The top 10 similar images in 
encrypted form are sent back to the edge node. In the edge 
node, the images are decrypted and sent back to the user. 
This overall flow of image retrieval is depicted in Fig. 11.

Performance analysis

In this section, the performance of the system has been 
evaluated using various metrics. Image security analysis, 
image retrieval performance analysis based on different 
feature extraction mechanisms, Attack impact analysis, 
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and completely different from the histogram of the original 
image.

Correlation analysis

Based on the correlation plot analysis of both the plaintext and 
encrypted images shown in Fig. 12b, it was observed that the 
encryption algorithm has effectively randomized the pixel values 
of the encrypted image and eliminated any correlation between 
adjacent pixels in the image, thus ensuring the confidentiality 
of the original plaintext image. Therefore, the correlation plot 
analysis provides strong evidence of the encryption algorithm's 
effectiveness in ensuring the security of the encrypted image.

Image retrieval performance analysis

The retrieval performance of the PPCBIR scheme can be 
evaluated by analyzing the search results in terms of preci-
sion, recall, and F1 score. Precision is the ratio of the number 
of similar images recovered to the total number of images 
recovered, Recall is the ratio of the number of similar images 

recovered to the total number of similar images and the F1 
Score is the harmonic mean of precision and recall.

Mean Average Precision (mAP) measures the effectiveness 
of a retrieval system by computing the average precision over 
a set of queries. A high mAP value indicates that the system is 
successful in retrieving relevant images for the given queries.

|Q| is the total number of queries in the set.
AP(qi) is the Average Precision score for the  ith query.

Precision =
No. of similar images retrieved

Total no. of images retrieved

Recall =
No. of similar images retrieved

Total no. of similar images

F1 Score =
2 x Precision x Recall

Precision + Recall

��� =
1

|Q|
∑

i

AP(qi)

a) freeway_025 b) island_041

c) stadium_017 d) forest_008

Fig. 11  Sample Query Results
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(a) Histogram Analysis

(b) Correlation Analysis

Fig. 12  (a) Histogram Analysis. b Correlation Analysis
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Performance under recent existing DL models

The retrieval performance of feature extraction-based CBIR 
schemes depends upon the features that best identify and 
describe the complex features of the image. CNN-based 

deep learning techniques can be used to extract complex, 
more meaningful features. Here we present a comparative 
study on how retrieval performance varies under different 
deep-learning models for feature extraction. We have studied 
9 different pre-trained models from Tensorflow. We have 

Query 
Image

Results

Fig. 13  Sample results of image retrieval



2291Earth Science Informatics (2024) 17:2275–2302 

shown 6 sample classes of images to demonstrate the results 
from each dataset. Figure 13 shows the sample results from 
each class.

Tables 2, 3, 4, 5, 6 and 7 presents the retrieval accuracy 
of each class with respect to 9 different feature extrac-
tion mechanisms and k = 10. The six common classes are 
taken from 3 different datasets NWPU, PatternNet, and UC 
Merced Land Use.

We have run the experiments on the entire dataset and 
come up with the following Table 8. From the results, it is 
vivid that MobileNetV2 features perform well for remote 
sensing image retrieval.

mAP is another important evaluation metric of CBIR. 
Experiments are conducted in the same 6 classes and tabu-
lated from Tables 9, 10 and 11 and compared the overall 
results in Table 12.

Table 2  Retrieval Accuracy 
of NWPU (airplane, diamond, 
residential)

NWPU airplane baseball_diamond dense_residential

Prec Rcal F-S Prec Rcal F-S Prec Rcal F-S

VGG19 0.804 0.161 0.268 0.620 0.124 0.207 0.832 0.166 0.277
VGG16 0.808 0.162 0.269 0.660 0.132 0.220 0.816 0.163 0.272
MobN 0.814 0.162 0.271 0.668 0.134 0.223 0.826 0.165 0.275
MobV2 0.756 0.151 0.252 0.714 0.143 0.238 0.930 0.186 0.310
IncV3 0.758 0.152 0.253 0.732 0.146 0.244 0.912 0.182 0.304
Xcep 0.788 0.158 0.263 0.698 0.139 0.233 0.746 0.149 0.249
Resnet 0.752 0.150 0.251 0.792 0.158 0.264 0.856 0.171 0.285
D121 0.811 0.160 0.267 0.756 0.151 0.252 0.856 0.171 0.285
D169 0.804 0.161 0.268 0.794 0.159 0.265 0.790 0.158 0.263

Table 3  Retrieval Accuracy 
of NWPU (forest, freeway, 
storage_tank)

NWPU forest freeway storage_tank

Prec Rcal F-S Prec Rcal F-S Prec Rcal F-S

VGG19 1 0.2 0.333 0.638 0.128 0.213 0.882 0.176 0.294
VGG16 1 0.2 0.333 0.628 0.126 0.209 0.888 0.178 0.296
MobN 1 0.2 0.333 0.724 0.145 0.241 0.804 0.161 0.268
MobV2 0.988 0.198 0.329 0.864 1.073 0.288 0.802 0.160 0.267
IncV3 0.990 0.198 0.330 0.718 0.143 0.239 0.790 0.158 0.263
Xcep 0.984 0.197 0.328 0.642 0.128 0.214 0.782 0.156 0.261
Resnet 1 0.2 0.333 0.702 0.140 0.234 0.784 0.157 0.261
D121 1 0.2 0.333 0.770 0.154 0.257 0.862 0.172 0.287
D169 1 0.2 0.333 0.750 0.150 0.250 0.822 0.164 0.274

Table 4  Retrieval Accuracy of 
PatternNet (airplane, diamond, 
residential)

PNet airplane baseball_diamond dense_residential

Prec Rcal F-S Prec Rcal F-S Prec Rcal F-S

VGG19 0.998 0.199 0.333 0.710 0.142 0.237 1 0.2 0.333
VGG16 0.996 0.199 0.332 0.818 0.164 0.273 1 0.2 0.333
MobN 0.998 0.199 0.333 0.772 0.154 0.257 1 0.2 0.333
MobV2 1 0.2 0.333 0.948 0.189 0.316 1 0.2 0.333
IncV3 1 0.2 0.333 0.862 0.172 0.287 1 0.2 0.333
Xcep 1 0.2 0.333 0.782 0.156 0.261 1 0.2 0.333
Resnet 1 0.2 0.333 0.920 0.184 0.307 1 0.2 0.333
D121 1 0.2 0.333 0.922 0.184 0.307 1 0.2 0.333
D169 1 0.2 0.333 0.910 0.180 0.311 1 0.2 0.333
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From Table 12 and Fig. 14, we can observe that the 
MobileNetV2 Deep learning model has achieved a maxi-
mum mAP value compared to the other models in all the 
datasets. The high mAP value can be attributed to the 
effectiveness of the retrieval scheme in ranking the images 
based on their relevance to the query. This indicates that 
the retrieval system using this model is more effective in 
retrieving relevant images. Additionally, with a focus on 
energy efficiency at edge devices, the MobileNetV2 model 
was selected to achieve a balance between energy efficiency 
and high retrieval accuracy.

Retrieval performance for different k values

Based on the analysis of the plot of K versus precision in 
Fig. 15 for values of K = 5, 10, 15, and 20, it was found 
that the highest precision was achieved for K = 5. However, 
this resulted in a relatively small result set. On the other 
hand, K = 10 provided a reasonably high precision and a 
larger result set, making it the preferred choice. Additionally, 
the recall and f1 score were computed and plotted against 
the K values. The plots suggest that the recall and f1 score 
increase with an increase in K. These results indicate that 

Table 5  Retrieval Accuracy 
of PatternNet (forest, freeway, 
storage_tank)

PNet forest freeway storage_tank

Prec Rcal F-S Prec Rcal F-S Prec Rcal F-S

VGG19 1 0.2 0.333 1 0.2 0.333 0.866 0.173 0.289
VGG16 1 0.2 0.333 1 0.2 0.333 0.930 0.186 0.310
MobN 1 0.2 0.333 1 0.2 0.333 0.856 0.171 0.285
MobV2 1 0.2 0.333 1 0.2 0.333 0.968 0.194 0.323
IncV3 1 0.2 0.333 1 0.2 0.333 0.840 0.168 0.280
Xcep 1 0.2 0.333 1 0.2 0.333 0.838 0.168 0.279
Resnet 1 0.2 0.333 1 0.2 0.333 0.932 0.186 0.310
D121 1 0.2 0.333 1 0.2 0.333 0.926 0.185 0.309
D169 1 0.2 0.333 1 0.2 0.333 0.918 0.184 0.306

Table 6  Retrieval Accuracy of 
UC Merced Land Use (airplane, 
diamond, residential)

UCM airplane baseball_diamond dense_residential

Prec Rcal F-S Prec Rcal F-S Prec Rcal F-S

VGG19 0.868 0.174 0.289 0.698 0.139 0.233 0.990 0.198 0.330
VGG16 0.862 0.172 0.287 0.790 0.158 0.263 0.984 0.197 0.328
MobN 0.990 0.198 0.330 0.848 0.169 0.283 0.946 0.189 0.315
MobV2 0.972 0.194 0.324 0.928 0.186 0.309 0.996 0.199 0.332
IncV3 0.956 0.191 0.319 0.832 0.166 0.277 0.898 0.179 0.299
Xcep 0.986 0.197 0.329 0.716 0.143 0.239 0.978 0.196 0.326
Resnet 0.922 0.184 0.307 0.888 0.178 0.296 0.982 0.196 0.327
D121 0.958 0.192 0.319 0.906 0.181 0.302 0.986 0.197 0.329
D169 0.954 0.190 0.318 0.914 0.183 0.305 0.982 0.196 0.327

Table 7  Retrieval Accuracy of 
UC Merced Land Use (forest, 
freeway, storage_tank)

UCM forest freeway storage_tank

Prec Rcal F-S Prec Rcal F-S Prec Rcal F-S

VGG19 1 0.2 0.333 0.970 0.194 0.323 0.774 0.155 0.258
VGG16 1 0.2 0.333 0.956 0.191 0.319 0.814 0.163 0.271
MobN 1 0.2 0.333 1 0.210 0.333 0.754 0.151 0.251
MobV2 1 0.2 0.333 0.994 0.199 0.331 0.834 0.167 0.278
IncV3 1 0.2 0.333 0.952 0.190 0.317 0.868 0.174 0.289
Xcep 1 0.2 0.333 0.980 0.196 0.327 0.852 0.170 0.284
Resnet 1 0.2 0.333 0.942 0.188 0.314 0.850 0.170 0.283
D121 1 0.2 0.333 0.988 0.198 0.329 0.888 0.178 0.296
D169 1 0.2 0.333 0.980 0.196 0.327 0.757 0.151 0.253
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the system's performance improves with an increase in the 
number of retrieved images, and selecting K = 10 strikes a 
balance between precision and recall in the image retrieval 
process, making it a suitable choice for the system.

The impact of K on accuracy has been also experimented 
with. Accuracy in query results is linked to the number of 
relevant images in the database. Therefore, K doesn't have 
to remain a fixed constant; it can be customized based on the 
desired result set size. For instance, with 30 relevant images 
in the database, setting K = 10 would yield an accuracy 
close to 1, retrieving nearly 10 out of 30 relevant images. 

On the other hand, if K = 50, the accuracy would be around 
0.6, retrieving all 30 relevant and 20 irrelevant images. In 
summary, accuracy is largely influenced by the quantity of 
relevant images in the database. The parameter K can be 
adjusted to suit the required result set size or fine-tuned as a 
constant based on the dataset.

Precision vs recall

Figure 16 shows the Precision-Recall curve which high-
lights the trade-off between precision and recall for 

Table 8  Retrieval Accuracy 
Comparison

NWPU PatternNet UCM

Prec Rcal F-S Prec Rcal F-S Prec Rcal F-S

VGG19 0.796 0.159 0.265 0.929 0.185 0.309 0.883 0.176 0.294
VGG16 0.811 0.16 0.266 0.957 0.191 0.319 0.901 0.180 0.301
MobN 0.806 0.161 0.268 0.937 0.187 0.312 0.923 0.184 0.308
MobV2 0.842 0.168 0.280 0.986 0.197 0.328 0.954 0.190 0.318
IncV3 0.816 0.163 0.272 0.950 0.190 0.317 0.918 0.183 0.306
Xcep 0.773 0.155 0.258 0.936 0.187 0.312 0.919 0.184 0.306
Resnet 0.814 0.163 0.271 0.975 0.195 0.325 0.930 0.186 0.310
D121 0.840 0.168 0.280 0.974 0.195 0.325 0.954 0.191 0.318
D169 0.827 0.165 0.275 0.969 0.194 0.323 0.931 0.186 0.310

Table 9  MAP of 6 classes in 
NWPU

NWPU airplane baseball_dia-
mond

dense_
residential

forest freeway storage_tank

VGG19 0.767 0.567 0.796 1 0.582 0.847
VGG16 0.776 0.579 0.778 1 0.572 0.859
MobN 0.777 0.609 0.798 1 0.678 0.759
MobV2 0.723 0.648 0.912 0.986 0.843 0.770
IncV3 0.727 0.674 0.886 0.987 0.667 0.751
Xcep 0.745 0.634 0.708 0.977 0.569 0.746
Resnet 0.704 0.764 0.838 1 0.657 0.748
D121 0.766 0.709 0.834 1 0.725 0.835
D169 0.771 0.758 0.757 1 0.712 0.784

Table 10  MAP of 6 classes in 
PNet

PNet airplane baseball_dia-
mond

dense_resi-
dential

forest freeway storage_tank

VGG19 0.996 0.674 1 1 1 0.857
VGG16 0.995 0.789 1 1 1 0.922
MobN 0.998 0.750 1 1 1 0.851
MobV2 1 0.935 1 1 1 0.963
IncV3 1 0.841 1 1 1 0.811
Xcep 1 0.746 1 1 1 0.821
Resnet 1 0.910 1 1 1 0.921
D121 1 0.911 1 1 1 0.912
D169 1 0.886 1 1 1 0.903
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different retrieval scenarios. The results indicate that the 
precision of the system decreases and recall increases as 
the number of images retrieved increases. This is expected 
as retrieving a larger number of images results in a wider 
pool of candidates, which can lead to a lower precision, 

while increasing the likelihood of retrieving relevant 
images, leading to higher recall. These results suggest 
that the system can effectively retrieve a larger number of 
images while maintaining a reasonable level of precision 
and recall.

Retrieval time analysis

Retrieval time is the turnaround time from the query image 
that has been given to receiving the encrypted images set. It 
is linearly dependent on the dataset size that we have in the 
repository. Figure 17 clearly shows the dependence.

Similarity measure metric analysis

Manhattan and Euclidean distance measures are com-
monly employed as similarity metrics in CBIR (Kapoor 
et al. 2021). The selection of a specific similarity measure 

Table 11  MAP of 6 classes in 
UCM

UCM airplane baseball_diamond dense_residential forest freeway storage_tank

VGG19 0.854 0.647 0.988 1 0.968 0.746
VGG16 0.844 0.764 0.982 1 0.954 0.774
MobN 0.986 0.825 0.939 1 1 0.715
MobV2 0.962 0.913 0.995 1 0.994 0.802
IncV3 0.950 0.803 0.881 1 0.949 0.836
Xcep 0.981 0.674 0.974 1 0.978 0.822
Resnet 0.908 0.879 0.981 1 0.939 0.827
D121 0.951 0.895 0.984 1 0.988 0.870
D169 0.944 0.907 0.980 1 0.977 0.729

Table 12  Comparative Analysis of mAP

mAP NWPU PNet UCM

VGG16 0.761 0.951 0.886
VGG19 0.759 0.921 0.867
MobileNet 0.770 0.933 0.911
MobileNetV2 0.813 0.983 0.944
InceptionV3 0.782 0.941 0.903
Xception 0.732 0.927 0.904
ResNet50 0.785 0.971 0.922
DenseNet121 0.811 0.971 0.947
DenseNet169 0.797 0.964 0.922

Fig. 14  Comparative Analysis 
of mAP
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is determined through an experimental analysis, where the 
accuracy of the retrieved results is compared using both 
measures. The results of this comparative analysis are 
detailed in Table 13.

From Table 13, it is evident that the Manhattan distance 
measure provides better results compared to Euclidean dis-
tance. Also, Manhattan distance is comparatively more light-
weight in terms of computation.

System availability analysis

The plot shown in Fig. 18 shows the time taken to retrieve 
the image when different numbers of servers are active, 
ranging from all five servers to only one server. For cases 
where at least three servers are active, the retrieval time is 
constant, and hence normalized to 1. However, if less than 
three servers are active, the retrieval time is set to zero, 

Fig. 15  K vs Precision, Recall, 
and F1 score (Fixed Mobilenet 
V2, NWPU)

Fig. 16  Precision vs Recall 
(Fixed K, Mobilenet V2)
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Fig. 17  Retrieval time Analysis

Table 13  Similarity Measure 
Analysis

mAP NWPU PNet UCM

Query Class Manhattan 
Distance

Euclidean 
distance

Manhattan 
Distance

Euclidean 
distance

Manhattan 
Distance

Euclidean 
distance

airplane 0.724 0.711 0.998 0.932 0.962 0.897
baseball_diamond 0.652 0.630 0.935 0.878 0.913 0.893
dense_residential 0.912 0.892 0.989 0.932 0.995 0.991
forest 0.985 0.943 0.990 0.901 0.996 0.891
freeway 0.843 0.810 0.988 0.899 0.994 0.943
storage_tank 0.771 0.741 0.963 0.912 0.811 0.765

Fig. 18  System availability 
analysis
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as the system cannot retrieve the image without at least 
three active servers. The results of the analysis show that 
the retrieval time is not affected as long as a minimum of 
three active servers are available. This demonstrates the 
robustness of the system to handle server failures, as long 
as the minimum number of active servers is maintained, 
and ensures the availability of images and reliability of 
the image retrieval process.

Security threat analysis

In our distributed cloud setup, only the master cloud is 
exposed to the internet. All the slave clouds and the data-
bases are connected internally and not accessible from the 
internet. Hence, an intruder can only perform insider attacks 
on the system. When the intruder gains access to the stored 
remainder matrix and shadows, even when he reconstructs 

Table 14  Various Image 
Attacks Original Image Attack Type Reconstructed Image

15% Salt and Pepper Noise

NC = 0.39

75% Crop

NC = 0.33

10% Compression

NC = 0.47

1% Gaussian Noise

NC = 0.001

5% Blur

NC = 0.0003
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the stored image, without the encryption keys he cannot 
decrypt the reconstructed encrypted image. Therefore the 
privacy of the data is not compromised.

Attacks focussing on data corruption can be performed 
at both master meta-db and slave databases. Storing data 
in a secure database service with regular backup (with 
integrity verification) can eliminate the corruption of 
already stored data. But still, the attacker can perform 
various image-based attacks (shown in Table 14) on the 
retrieved shadows to corrupt the data and make the data 
meaningless when reconstructed and decrypted. The 
encryption algorithm (Shafique et al. 2021) is resilient 
to image attacks such as cropping and noise attacks, up to 
a certain limit. However, beyond this limit, decryption of 
the encrypted image results in a highly distorted image. 
The Table 14 illustrates the various attacks along with 
their limits, beyond which the encryption algorithm is 
no longer resistant. To ensure that the decrypted image 
has negligible distortion, it is essential to detect and pre-
vent image data corruption. The results of the analysis 
emphasize the need for a robust data corruption detection 
mechanism to maintain the integrity of the encrypted 
images, and to ensure that the decrypted images are of 
high quality.

Attack detection and recovery model analysis

This subsection is dedicated to discussing how the proposed 
system reduces the impact of security attacks. Figure 19 
shows the distributed cloud setup, where one slave cloud 
is malicious. A malicious slave cloud can corrupt the data 
under the following scenarios:

1. During storage, it can corrupt the shadow before storing 
it. In this case, data corruption is irreversible and is a 
very serious threat

  Figure 20 depicts the attack scenario during storage. 
The master sends each shadow to TPA and the corre-
sponding slave for storage. Each slave stores the received 
shadow and sends a confirmation to the master and TPA. 
TPA verifies the integrity of the shadow immediately 
after receiving the confirmation from the corresponding 
slave.

2. During retrieval, it can corrupt the retrieved copy of the 
shadow before sending it to the master. In this case, the 
original data stored is not modified, only the retrieved 
data is modified.

Figure 21 shows the attack scenario during retrieval. The 
master fetches shadows from any 3 available slave clouds 
and sends the list of IDs of those slave clouds to TPA. TPA 
fetches the shadow from those 3 slave clouds and verifies 
their integrity by comparing the fetched shadow’s hash with 
the original shadow’s hash stored in the TPA’s hash db.

Figure 22 shows the plot for NC value between vari-
ous original images and their corresponding decrypted 
and retrieved copy that was generated for two cases of 
the system under attack (50% crop attack): one where the 
TPA is present and the other where the TPA is not present. 
In the first case, all images had an NC value close to 1, 
implying that the retrieved image is nearly identical to 
the original image. Hence it is evident that the attack was 
unsuccessful and our system is resistant to these image-
based attacks. In the second case, the NC value fluctuated 
significantly around 0.4, implying large distortions in the 

Fig. 19  Distributed Cloud Setup
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retrieved image and variations from the original image. 
Here the attack was successful in the absence of TPA, 
which is the case in the existing retrieval systems. To pre-
vent such image attacks which result in a lower NC value, 
it is important to detect them beforehand, thereby ensuring 
that the images are retrieved with negligible distortion. 
This analysis highlights the importance of the detection 
and prevention of image data corruption and how it affects 
the accuracy and integrity of the retrieved images in the 
system. This analysis also supports the fact that our system 
is resistant to these data integrity-compromising, image-
based attacks.

Theoretical analysis of the security provided by Hybrid 
Image Encryption (HE), Secret Image Sharing (SIS), and 
Third-Party Auditing (TPA) on the cloud side in EdgeShield 
involves establishing mathematical foundations for each 
component. Here's a conceptual breakdown:

Let I be the original image, and E denote the encryption 
function. Chaotic logistic map and inverse inverse discrete 
wavelet transform (IDWT) together form the hybrid encryp-
tion process:

HE(I) = E( Rand_Img(Chaotic_Sequence)

⊕ IDWT(I) ∀channals)

n shadows S1, S2, …., Sn and a remainder matrix R are gener-
ated from the encrypted image. The sharing process can be 
expressed as

TPA involves the verification V of the integrity of the 
stored shadows and the reconstruction R' of the original 
image during retrieval with k shadows. The verification 
process can be expressed as

 The reconstruction function can be denoted as

The collective security of EdgeShield using HE, SIS, and 
TPA can be represented as

SIS(HE(I) = {S1, S2,… ., Sn,R}

�
��

S1, S2, ...., Sk , R
��

= {0, 1}

⎧
⎪
⎨
⎪
⎩

where 0 indicates integrity

verification failure, and 1 indicates

success.

R�
({

S1, S2 ...., Sk, R
})

= HE−1
({

S1, S2 ...., Sk, R
})

where HE−1 is the hybrid image decryption function.

TPA(SIS(HE(I))) = V
({

S1, S2 ...., Sk, R
})

∗ R
�
({

S1, S2 ...., Sk, R
})

= I

Fig. 20  Attack during storage
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This equation symbolizes the theoretical framework 
wherein the combined contributions of third-party auditing, 
secret image sharing, and hybrid image encryption converge 
to ensure security within EdgeShield.

Conclusion and future works

This paper presents an advanced image retrieval system 
that emphasizes the integration of the PPCBIR scheme, 

Fig. 21  Attack during retrieval

Fig. 22  Attack Impact Analysis
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edge computing, distributed cloud environment, and third-
party auditing, with a focus on ensuring secure storage and 
retrieval of images while preserving privacy. The retrieval 
accuracy is improved by using a CBIR scheme involving 
MobileNetV2-based feature extraction techniques. To reduce 
processing overload on users, an edge computing layer is 
introduced that performs encryption and feature extraction 
tasks. Finally, to ensure the availability of images, a dis-
tributed cloud environment is implemented, enabling users 
to access images even during a server blackout. In military 
kinds of sensitive domains, to detect and mitigate image data 
corruption, third-party auditing was implemented. The sys-
tem has been designed with the principles of data security 
as a primary goal. Confidentiality, integrity, and availability 
have all been achieved through the use of encryption, third-
party auditing, and distributed cloud storage respectively. 
The system performed well in various performance evalu-
ations such as mean average precision, normalized correla-
tion, and impact under attack. The results demonstrate that 
the system is effective in ensuring privacy, security, and 
accuracy in image retrieval while maintaining the availabil-
ity of images for authorized users. In the future system’s 
retrieval performance can be improved by extracting more 
meaningful, complex features. To improve security, various 
attacks at the edge layer can be comprehensively studied 
and mitigated.
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