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Abstract 

The security and privacy of medical images are crucial due to their sensitive nature and the potential for severe 
consequences from unauthorized modifications, including data breaches and inaccurate diagnoses. This paper 
introduces a method for lossless medical image retrieval from encrypted images stored on third-party clouds. The 
proposed approach employs a symmetric integrity-centric image encryption scheme, leveraging multiple chaotic 
maps and cryptographic hash techniques, to ensure lossless image reconstruction. Medical images are first encrypted 
by the image owners and converted into hashcodes encapsulating essential features using a deep hashing technique 
with the ConvNeXt network as the backbone in parallel. To ensure index privacy, these hashcodes are encrypted 
in a searchable manner. The encrypted medical images, along with a secure index, are subsequently uploaded 
to cloud storage. Authorized medical image users can request similar medical images for diagnostic purposes by sub-
mitting a query image, from which a search trapdoor is generated and sent to the cloud. The retrieval process involves 
a secure similar image search over the encrypted indexes, followed by decryption along with integrity verification 
of the retrieved images. The proposed method has been rigorously tested on three standard medical datasets, dem-
onstrating an improvement of 5-20% in retrieval accuracy compared to standard baselines. Formal security analysis 
and experimental results indicate that the proposed scheme offers enhanced security and retrieval accuracy, making 
it an effective solution for the encrypted storage and secure retrieval of medical image data.

Keywords Encrypted medical images, Integrity-centric image encryption, Deep hashing, Searchable encryption, 
Secure similar image search

Introduction
In recent decades, advancements in medical imaging have 
substantially enhanced healthcare services, enabling phy-
sicians to make more informed decisions regarding diag-
nosis and treatment through detailed visualizations  [1]. 
The exponential growth in the volume and processing of 

medical imaging data, coupled with the need for scalable 
storage solutions, has led to the incorporation of cloud 
technology. Despite its benefits, cloud-based medical 
image storage is not inherently trustworthy and poses 
significant risks such as data breaches, unauthorized 
access, and potential tampering, which compromise the 
security of sensitive patient information, including confi-
dentiality, integrity, and availability [2]. To mitigate these 
threats and maintain trust and integrity in cloud-based 
medical image storage, robust security measures and 
compliance frameworks are essential.

Encrypting medical images before storage in the 
cloud addresses some aspects of secure storage. How-
ever, even slight alterations by unauthorized individuals 
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to encrypted medical images can lead to erroneous 
diagnoses and treatments. Traditional retrieval meth-
ods are inadequate for the secure Content-based Image 
Retrieval (CBIR) [3] of encrypted images, as they fail to 
meet the demands for swiftly and accurately retrieving 
large volumes of encrypted medical image data with-
out privacy leakage. Consequently, there is a pressing 
need for solutions that enable the efficient retrieval of 
encrypted medical images while safeguarding privacy 
in cloud storage. This necessitates the development of 
methods that ensure medical images are securely stored 
and retrieved without any information loss when stored 
in a third-party cloud.

Medical image encryption schemes primarily empha-
size content confidentiality  [4]. Existing methods  [5, 
6] address specific attack resistances such as statisti-
cal and differential attacks when developing new image 
encryption models. However, if an intelligent malicious 
user or cloud attempts to modify encrypted images in 
storage, it can lead to incorrect decryption and diagno-
sis. Some schemes  [7, 8] have introduced watermark-
ing-based authentications, but these approaches add 
computational overhead to the process. The challenge 
remains in performing these tasks efficiently. This can 
be addressed by incorporating integrity-centric image 
encryption, where the encryption algorithm inherently 
ensures integrity verification, eliminating the need for 
external processes. This approach should be executed 
within secure regions using trusted databases. By 
implementing this scheme, lossless image decryption 
can be achieved with ciphertext distinguishability, pre-
venting potential adversaries from learning or modify-
ing any information about the medical images.

Secure medical image retrieval from encrypted image 
databases is another critical task that ensures both con-
fidentiality and searchability in the cloud. However, 
most current top-k ranked image retrieval methods 
suffer from limited efficiency and may inadvertently 
reveal the values and sequences of similarity scores to 
the cloud server. This exposure poses a risk, as a mali-
cious cloud server could deduce user preferences and 
predict the most similar image content based on these 
similarity scores if it gains access to user background 
information through illegitimate means. Therefore, 
both efficiency and index security need improvement 
in the context of secure Content-based Medical Image 
Retrieval (CBMIR)  [9, 10]. While some methods for 
efficient hashcode generation exist, they often fall 
short in accuracy when encrypted for secure indexing. 
Recently, ConvNeXt has shown superior performance 
in feature extraction compared to other deep learn-
ing models, making it suitable for efficient hashcode 

generation. To enhance index and search privacy, these 
hashcodes are made searchable and encrypted.

As discussed above, existing secure CBMIR systems 
exhibit low retrieval accuracy, a high risk of index expo-
sure to malicious users or clouds, and less protective 
image encryption models. To address these issues in 
medical image storage and retrieval from both security 
and performance perspectives, a novel Secure Medical 
Image Retrieval system (SMedIR) in the cloud has been 
proposed. This system features integrity-centric image 
encryption and secure indexing schemes. Figure  1 pro-
vides a high-level overview of the proposed SMedIR in 
the cloud. The major contributions of this article are out-
lined below. 

1. A novel secure and efficient medical image retrieval 
framework (SMedIR) has been proposed.

2. An integrity-centric image encryption scheme is 
introduced to store medical images securely, which 
ensures lossless image decryption.

3. The ConvNeXt-based deep hashing method is 
employed to extract meaningful similarity-preserving 
hashcodes for indexing which are encrypted using 
the proposed searchable encryption scheme.

4. Formal security analysis of the SMedIR framework 
is presented in terms of index privacy, query privacy, 
search privacy, and image security.

5. Experimental findings demonstrate that the pro-
posed technique has higher security and better 
retrieval efficiency than existing baseline models.

The rest of the article is structured as follows, The 
related works have been compiled in Related works sec-
tion. The proposed framework and its preliminaries are 
presented in System architecture  section. Furthermore, 
Security and privacy analysis section gives a detailed the-
oretical analysis of security and privacy of the proposed 
framework. Experimental results and retrieval perfor-
mance analysis are extensively discussed in Experimental 
results and performance analysis section. Finally, the pro-
posed work is concluded in Conclusion section.

Related works
In this section, The authors present an overview of exist-
ing secure image encryption techniques and secure 
image retrieval systems.

Secure image encryption techniques
Image encryption is a technique that encodes a confi-
dential image using an encryption method to ensure that 
only authorized individuals can access it  [11, 12]. This 
technique is crucial for secure image retrieval, as images 
are stored in encrypted form with a secure index in the 
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cloud. Numerous image encryption techniques have been 
constructed  [13, 14]. Kaur et  al.  [14] conducted a com-
prehensive survey of existing image encryption meth-
ods, categorizing them into spatial, optical, transform, 
and compressive sensing domains, and comparing their 
performance metrics, advantages, and disadvantages. 
Furthermore, Priyanka and Singh  [15] reviewed secure 
image encryption techniques tailored for healthcare 
applications.

In 2020, Wan et  al.  [16] introduced a new image 
encryption scheme combining a hyperchaotic Qi sys-
tem, a one-dimensional chaotic map, and DNA coding. 
To enhance security, Paul et al.  [17] implemented image 
encryption using SHA-512 and pixel-shifting based on 
the Zaslavskii map. Moreover, Han et al.  [18] developed 
a fully hash-based fast image encryption system for the 
Internet of Things (IoT) environment, demonstrating its 
robustness against major attacks.

Lin et  al. [19] designed a novel symmetric image 
encryption scheme for medical images using chaotic 
maps and quantum-based keys, with a focus on long-
term vision. Nevertheless, recently, Dash et al.  [20] pro-
posed a unique image encryption method based on 
intra-inter pixel permutation for medical images in an 
IoT environment, showcasing its effectiveness with brain 
MRI images. Therefore, most existing image encryption 
algorithms prioritize confidentiality  [21], but critical 
domains handling sensitive images, such as healthcare, 
require integrity-focused image encryption schemes.

Secure image retrieval systems
Secure and privacy-preserving image retrieval involves 
performing image searches within an encrypted database 
while maintaining high performance without any com-
promise [22–25]. There are various approaches for secure 
and privacy-enhanced content-based image retrieval, 
which can be categorized into two main types. The first 
category involves image generators constructing secure 
indexes from image features, encrypting the images, and 
using the cloud for storage. The second category del-
egates feature extraction and secure index calculation to 
the cloud, where deep hashing plays a major role. This 
method extracts image features and constructs similar-
ity-preserving hashcodes [26–29].

From a security perspective, Xu et  al.  [30] proposed 
an image retrieval system for large-scale systems in the 
cloud, utilizing Hamming embedding to generate binary 
signatures. Min-hash is then performed over these 
binary signatures. The primary goal of this approach is to 
improve retrieval accuracy by combining the frequency 
histogram of the image with the binary signature, provid-
ing a more precise representation of the image’s features. 
Yan et al.  [31] employed the Software Guard Extensions 
(SGX) enclaves for secure similarity search in the IoT 
environment. This approach employs a simple encryption 
scheme, relying on the trusted environment provided by 
Intel SGX.

Du et  al.  [32] developed a secure image retrieval 
scheme based on deep hashing. This approach uses 

Fig. 1 System model of encrypted medical image retrieval framework
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Secure k-NN as a secure search index and employs DNA 
encoding combined with simple chaotic maps for image 
encryption. In 2020, the same authors enhanced the sys-
tem’s accuracy and speed by incorporating a 4D hyper-
chaotic map and deep pairwise supervised hashing [33]. 
Xia et al. [34] proposed a method where the Local Binary 
Pattern (LBP) of an image is extracted for image search. 
They introduced a simple encryption scheme involving 
big block permutation, pixel permutation, and an order-
preserving polyalphabetic cipher, using the Manhattan 
distance to assess image similarity.

Janani et  al.  [35] explored secure multiparty-based 
similarity matching for efficient medical image retrieval, 
comparing it with existing similarity measuring tech-
niques. Zhu et al.  [36] advanced the field by designing a 
new Privacy-preserving Mahalanobis Distance Compari-
son (PMDC) method. This technique was compared with 
VFIRM [37], which uses an adapted homomorphic MAC 
technique to verify search result correctness and a pol-
ynomial-based access strategy for efficient fine-grained 
access control. However, it is noted that these methods 
are not IND-CPA secure, and their indexes may leak 
some information.

From the above studies and works, it is evident that 
numerous efforts have been made to develop secure 
image encryption schemes and create secure image 
retrieval systems. However, there remains a clear demand 
for an efficient and secure cloud-based medical image 
retrieval system that integrates integrity-focused image 
encryption and secure indexing with searchable encryp-
tion. This need has driven the authors to develop the 
proposed system, “SMedIR” specifically designed for 
healthcare applications.

System architecture
Problem formulation
The proposed system consists of Medical Image Own-
ers (MIO), Cloud Storage (CS), and authorized Medi-
cal Image Users (MIU), as depicted in Fig. 1. MIO have 
a set of n medical images M = {M1,M2, ...,Mn} which 
has to be outsourced to the cloud after securing them 
using encryption schemes. MIU, who are authorized, will 
retrieve similar images by sending the query image MQ 
to the cloud. CS provides services for storing, manag-
ing medical images, and handling incoming queries with 
secure search. As the CS is honest and curious, image 
and query privacy are the major concerns. The prob-
lem entails identifying the k most similar images from 
an encrypted image database to a specified query image 
MQ while preserving the privacy of both the image and 
the query. The overall system model is depicted in Fig. 2. 
A secure solution proposed is detailed in this section. 
Table 1 lists the notations used with a description.

Proposed system model and design
An efficient and secure medical image retrieval system 
(SMedIR) with an integrity-centric image encryption 
scheme and encrypted searchable index in the cloud is 
proposed to achieve the following goals.

• Privacy Preservation: Cloud servers should not be 
aware of any stored and incoming query image infor-
mation.

• Image Integrity: Reconstruction of the sensitive 
medical image should verify the integrity of that 
image.

• Retrieval Accuracy: The suggested system should 
have improved accuracy than the existing secure 
image retrieval models.

The proposed system has different entities that work 
together to make this secure retrieval work. Figure  2 
shows the proposed SMedIR architecture. It consists of 
two major phases. In the first phase, MIO outsources the 
encrypted medical images to the CS by securely indexing 
them. In the next phase, MIU retrieves the top-k similar 
medical images from the CS. Trusted third-party Key 
Management Authority, KMA generates the key based 
on the security parameter � and distributes it to MIO and 
the MIU. MIO is responsible for securely outsourcing the 
medical images M . Both encrypted medical images in E 
and the corresponding indexes in EI are uploaded to the 
cloud. The CS provides the storage and search service 

Table 1 Notations used

Notation Description

M = {Mi}
n
i=1 Medical Images

E = {Ei}
n
i=1 Encrypted Medical Images

K = {KS , KI , KQ} Keys in the system

KS Symmetric Key for Image Encryption and Decryption

P Reversible Matrix

ǫ1, ǫ2,ω Random numbers

KI = {P−1, ǫ1, ǫ2} Index Encryption Key

F = {Fi}
n
i=1 Feature Vectors of n Medical Images

H = {Hi}
n
i=1 Hashcodes of n Medical Images each of length d

x̂i Expanded intermediate form of hashcode Hi

EI = {EIi}
n
i=1 Encrypted Indexes of n Medical Images

MQ Query Medical Image

HQ Hashcode of MQ

KQ = {P,ω} Query Trapdoor Generation Key

ŷq Expanded intermediate form of query image hash-
code HQ

TDQ Search Trapdoor

� Security parameter

ρ Public parameters
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over the encrypted database when it receives the query. 
MIU creates the search trapdoor TDQ by generating the 
hashcode from the query image MQ . CS searches over the 
encrypted medical image database with TDQ and returns 
top-k relevant images to the MIU. After MIU receives the 
top-k results from the CS, it decrypts the result images.

Framework design
This subsection presents the framework of proposed 
system by explaining the functionalities of each entity 
and associated algorithms. KMA runs EnvSetup and 
KeyGen algorithms. MIO executes ImageEnc , HashGen , 
and SecIndexGen algorithms. MIU uses TrapdoorGen , 
ImageDec algorithms. CS provides a secure similar 
image search with SecSimSearch algorithm. 

1. ρ ← EnvSetup(1�) : The setup algorithm takes secu-
rity parameter � and returns the public parameters ρ 
of the system.

2. K ← KeyGen(ρ) : The key generation algorithm 
takes the public parameter ρ as input and produces 
the key K = {KS ,KI ,KQ} as output.

3. E ← ImageEnc(M,KS) : The image encryption algo-
rithm takes medical images M , and encryption key 
KS as input, and outputs encrypted medical images E
.

4. H ← HashGen(M) : The hashcode generation algo-
rithm takes input as medical images M and return 
the converted meaningful hashcodes H.

5. EI ← SecIndexGen(H,KI ) : The index generation 
algorithm takes H with Index Generation key KI and 

returns the searchable encrypted indexes EI which is 
offloaded to the cloud.

6. TDQ ← TrapdoorGen(MQ,KQ) : The trapdoor gen-
eration algorithm takes a query image MQ and key 
KQ , and outputs a searchable trapdoor TDQ which 
will be sent to CS for search.

7. EQ ← SecSimSearch(TDQ,EI,E) : A secure similar 
image search algorithm, for a given encrypted query 
TDQ returns encrypted images EQ ∈ E as a result 
from the CS to MIU.

8. S ← ImageDec(EQ,KS) : An image decryption algo-
rithm takes resultant encrypted medical images EQ , 
and decryption key KS as inputs and outputs plain 
medical images set S.

This section summarizes the problem formulation, over-
all framework, and detailed design. Figure 3 explains the 
interaction among the entities of the proposed system.

Technical background details
Some prerequisites must be addressed to comprehend 
the SMedIR. This subsection explains DNA encoding 
with operations, chaotic maps, searchable encryption, 
and the ConvNeXt deep learning model.

DNA encoding and operations
A new area of unconventional computing called “DNA 
computing” replaces standard electronic computing 
with DNA sequences and molecular biology hardware. 
In DNA encoding, binary data is transformed into the 
DNA sequence. The Watson-Crick principle forms the 
basis of it  [38]. Adenine (A), Guanine (G), Cytosine (C), 

Fig. 2 Proposed SMedIR architecture
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and Thymine (T) are the four nucleic acid bases that 
make up the DNA string. A and C are complementary 
base pairings, bonding to T and G, respectively. The four 
fundamental DNA building blocks are the binary codes 
Adenine-00, Thymine-11, Cytosine-10, and Guanine-01. 
The binary rule permits 24 encoding schemes, but only 8 
fit the DNA pairing rule due to the complementary base 
pairing. Table 2 displays the eight standard rules for DNA 
mapping sequence.

While encoding the bit stream into a DNA-encoded 
sequence, the encoding has 8! possibilities. This DNA 

encoding technique is being utilized for substitutions in 
encryption methods. The tremendous storage capacity of 
DNA, the minimal power requirements for computation, 
and the rapid processing speeds of DNA encoding are 
its key benefits  [39]. DNA encoding is a more effective 
means of encrypting images than bit-level and pixel-level 
encryption algorithms in terms of security. DNA com-
puting supports logical and arithmetic operations. The 
DNA-encoded data might be subjected to addition, sub-
traction, XOR, and XNOR operations. XOR operation is 
most widely used in image encryption techniques  [40]. 

Fig. 3 End-to-end flow diagram
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The truth_table for the DNA XOR gate is displayed in 
Table 3.

Chaotic maps
Chaotic maps are investigated in a dynamic environ-
ment and are too sensitive to initial conditions  [41]. 
This implies that outputs can be drastically altered by 
slightly changing the initial parameters. These maps can 
be divided into discrete maps and continuous maps. 
These maps are used to generate keys to diffuse the image 

pixels. A logistic map and a 3D Lorenz map have been 
employed in the proposed encryption scheme.

Logistic Map: This map is a nonlinear chaotic map that 
yields a non-periodic pseudo-random sequence [42]. The 
logistic map’s mathematical expression is shown in Eq. 1.

xn and xn+1 represent the current state and next state 
respectively. The control parameter is γ , and x0 is the ini-
tial value. When γ ∈ (3.5, 4] and x0 ∈ [0, 1] , the behav-
ior becomes chaotic. This map provides randomness 
and complexity, making it valuable for secure crypto-
graphic systems due to its ability to generate unpredict-
able sequences resistant to attacks. Its computational 
efficiency and simplicity make it suitable for real-time 
encryption applications such as in healthcare. Gener-
ally, the bifurcation diagram of any chaotic map visu-
ally shows the period doubling as the control parameter 
increases. Figure  4a illustrates the bifurcation diagram 

(1)xn+1 = γ xn(1− xn)

Table 2 DNA encoding rules

Bits i ii iii iv v vi vii viii

00 A A G C G C T T

01 G C A A T T G C

10 C G T T A A C G

11 T T C G C G A A

Table 3 DNA XOR truth_table

XOR A G T C

T T C A G

G G A C T

A A G T C

C C T G A

Fig. 4 Bifurcation diagram
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of the logistic map. Here, the x becomes chaotic when γ 
varies from 3.5 to 4. From one chaotic map to the other, 
these control parameter values change.

3D Lorenz Chaotic Map: The Lorenz is a three-
dimensional chaotic dynamic map [43]. Equations 2-4 
below can be used to characterize the system.

µ, η, δ are the control parameters and x0, y0, z0 are the 
initial values. The control parameters have a significant 
impact on the system. The proposed image encryp-
tion algorithm uses a system of equations that displayed 
chaotic behaviour for the µ = 10 , η = 28 , and δ = 8/3 . 
Figure  4b depicts the attractor produced using this 3D 
Lorenz chaotic map. Secure keys generation utilizes this 
chaotic map in the proposed image encryption algo-
rithm because of its higher rate of non-repetitiveness and 
unpredictability.

Searchable encryption
Searchable encryption (SE) enables efficient search 
operations over encrypted files, ensuring retrieval 

(2)
dx

dt
= µ(y− x)

(3)
dy

dt
= x(η − z)− y

(4)
dz

dt
= xy− δz

capability while maintaining encryption integrity and 
preventing decryption. SE enables outsourcing files to 
an untrusted cloud storage server without disclosing the 
files in plaintext while still enabling the server to per-
form searches over them. Therefore, the security model 
should ensure that ciphertexts are indistinguishable, 
preventing adversaries from discerning any meaning-
ful information from ciphertexts. In this article, image 
indexes are encrypted.

ConvNeXt deep learning model
ConvNeXt, a family of pure ConvNet models introduced 
by Zhuang et al. [44], achieves competitive accuracy and 
scalability compared to Transformers while maintaining 
the simplicity and efficiency of standard ConvNets. Two 
significant changes in the architecture level are using 
GELU instead of ReLU and Layer Normalization instead 
of Batch Normalization. Both changes boost the model 
performance better than transformers and this model 
extracts features at both local and global levels. Con-
vNeXt models are a viable option for tasks where Con-
vNets are more suited, while Transformers may be more 
flexible for tasks requiring feature interactions across 
modalities or structured outputs. So, this model has been 
selected as a backbone of a content-based similarity-pre-
serving deep hashing network. The ConvNeXt architec-
ture is shown in Fig.  5. The upcoming sections explain 
the proposed secure indexing and retrieval framework in 
detail.

Fig. 5 ConvNeXt architecture
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Secure indexing of medical images
The proposed system architecture is shown in Fig.  2. 
The system contains two major phases: secure index-
ing and secure search over encrypted medical images. 
This subsection details each module in each phase. In 
secure indexing, MIO encrypts the medical image, gen-
erates the encrypted searchable index, and uploads them 
to the cloud. This phase contains 5 different functions 
which are: EnvSetup , KeyGen , ImageEnc , HashGen , 
SecIndexGen.

EnvSetup and KeyGen
EnvSetup is the function which produces public security 
parameters ρ from the input parameter 1� . This module 
initially sets the parameters α , d as well. Here, α is the 
prime number, and d is the length of the hashcode. Using 
α , a multiplicative cycle group Gcy with order α has been 
selected. For a pseudorandom number generation PRf  , 
which is defined as PRf : {0, 1}

� → Gcy will be chosen. 
This PRf  maps the pseudorandom number to the prime 

number field Zd in the order of α . The system parame-
ters of logistic and 3D-Lorenz chaotic map, γ , µ , η , δ will 
be determined. Finally, the module outputs the public 
parameter ρ.

KeyGen module produces the K by taking ρ as input. 
As shown in Algorithm  1, symmetric image encryption 
key (KS) , index encryption key (KI ) , trapdoor genera-
tion key (KQ) are generated. P represents the invertible 
matrix. ǫ1, ǫ2,ω are the random numbers. KS contains 
the sub keys required for image encryption which are 
{klx, kly, klz , klg , ken, kde, kscr} . Here klx, kly, klz are initial 
conditional parameters of 3D-Lorenz map. klg is the ini-
tial parameter of the logistic chaotic map. ken, kde, kscr 
are encoding key, decoding key, and scrambling key 
accordingly Finally, the KMS sends the secret key K to 
the MIO, MIU through a secure channel so that the MIU 
can perform encryption, indexing, and MIO can perform 
trapdoor generation, and decryption operations.

(5)ρ = {α, d,Gcy,PRf , γ ,µ, η, δ}

Algorithm 1 KeyGen 

Image encryption model
Medical images must be stored securely to avoid 
information leakage and modification. In this image 
encryption module, there is an algorithm that ensures 
confidentiality and integrity. The image owner encrypts 
the image before uploading it to the cloud. This model 
is designed for medical centers, which are capable of 

having trusted platform modules. The KeyGen module 
generates the keys required for image encryption and 
shares them with MIO. The proposed encryption model 
consists of DNA encoding, cryptographic hash gen-
eration, bit-plane scrambling, DNA-XOR, and bit-wise 
XOR operations.
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Algorithm 2 ImageEnc 

Algorithm  2 explains the steps in the proposed integ-
rity-centric medical image encryption model. Initially, 
the required secret key sequences KLG ,KLZ are gener-
ated from the logistic map and 3D-Lorenz map using 
Eqs. 1, 2-4 respectively. As bit-plane representation helps 
to apply bit-level operations, M used that format during 
the encryption process [45]. Input Mi is a grayscale image 
that uses 8-bit-plane representation. Firstly, the input 
image is DNA encoded ( Mi → DMi ) using the encod-
ing key Ken . DNA-encoding rules specified in Table  2 
are employed to perform pixel substitution on Mi . In 
this step, a process of generating cryptographic hash 
and corresponding DNA encoded bitplanes in a Trusted 
Platform Module (TPM) has been introduced. Any TPM 
can be used for this trusted storage. It helps to verify the 
integrity of the image while reconstructing. Then, the 
DMi bit planes are scrambled using kscr . At the same 
time, Lorenz chaotic sequence LLZ is DNA encoded and 
scrambled using ken, kscr respectively. Both DNA encoded 
image and key sequence are undergoing the DNA XOR 
operation. The output DXi is again DNA decoded using 

kde . Finally, the generated image DDi is bit-wise XOR 
with a generated logistic chaotic sequence KLZ , which 
produces an encrypted image Ei.

The proposed system is resistant to multiple potential 
attacks. This encrypted medical image will be outsourced 
with encrypted images to the cloud. In traditional encryp-
tion methods, side-channel attacks exploit variations in 
computation time to infer sensitive information. To miti-
gate this vulnerability, the authors propose modifying the 
encryption time function to include a noise factor ǫ . This 
modification introduces random variability in the encryp-
tion time, thereby obfuscating the timing information 
that side-channel attacks rely on. This has been formally 
proved in Theorem  4. The hashcode generation and its 
encryption are detailed in the upcoming submodules.

Deep hashing using ConvNeXt model
For the secure searchable encrypted index generation, 
images are converted into hashcodes and then encrypted. 
The hashing model utilized the ConvNeXt model as a 
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backbone for hashcode generation. ConvNeXt models 
extract better features than other ConvNets. The layered 
architecture of this deep hashing network is shown in Fig. 6. 
Each level contains different convolution strides to learn the 
deep features. ConvNeXt block utilizes GELU instead of 
ReLU, LN instead of BN, Inverted Bottleneck architecture. 
As this module takes the concept of vision transformers, it 
captures both local and local features. Finally, the fully con-
nected layer brings the features extracted for image Mi and 
gets the feature vector Fi = {f1, f2, ...fd} . The features are 
converted into hashcode Hi = {h1, h2, ...hd} of length d 
based on the following equations:

Here, β is the median of the feature vector Fi . This 
model uses the contrastive learning method to gener-
ate similarity-preserving hashcodes. Inputs are paired 
and given while training. So, the hashing network gen-
erates the hashcodes, and based on the contrastive loss, 
the model updates its weights. In the proposed method, 
contrastive loss, quantization loss, and bit balance loss 
are combined in a way that the network generates better 
hashcodes. The contrastive loss is defined as follows:

(6)hj = H func(fj)

(7)

H func(fj) =
1, if fj is greater than or equal to β

0, if fj is less than β

(8)

Lcont (hi , hj ,S) =
1

2

N
∑

k=1

(

S .dt2 + (1− S).MAX(0,M− dt2)
)

Here, hi and hj are the hashcodes generated from the 
deep hashing model of i, jth medical images. S is the label 
that denotes whether both images belong to the same class 
or not. if both i and j are falls to same class then sim = 1 
or 0 otherwise. N in the number of training images in 
that minibatch. dt is the euclidian distance between the hi 
and hj . M is the margin hyperparameter that controls the 
separation between similar and dissimilar pairs. Given the 
inherent complexity in optimization, the current technique 
lacks the capability to guarantee the complete conver-
gence of generated hashcodes. So, a pairwise quantization 
loss ( Lquant ) is used to encourage the network output to 
be close to standard binary codes. The pairwise quantiza-
tion loss is defined in Eq.  9, and a quantization function 
is applied to approximate the binary code to the desired 
hashcode.

Here, 1 is a vector of all ones, ‖ ‖ is the L1-norm of the 
vector, and | | is the element-wise absolute value opera-
tion. Added to these two losses, bit balances loss ( Lbit ) 
is also added to efficiently compute the hashcode. This 
means that there is a 50% chance that each hashcode will 
be between 0 and 1. It is possible to generate more unique 
hashcodes by utilizing the target function provided in 
Eq.  10 for d-bit hashcode generation, here, hl is the hash 
layer output of lth node

(9)Lquant =
∑

i,j∈N

(� |hi| − 1 �1 + � |hj| − 1 �1)

(10)Lbit =
1

d

N
∑

k=1

d
∑

l=1

hl

Fig. 6 ConvNeXt based deep hashing model with contrastive learning
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Finally, the cumulative loss function for the discrimi-
nant hashcode generation is

All losses are merged. The overall objective is to mini-
mize the total loss. φ and χ are the weighting factors to 
control the losses. By propagating this error in each hash 
generation network, efficient hashcodes are generated.

Searchable encrypted index generation
This module generates the secure index from the hash-
code Hi leveraging the basic idea of a.b = (aP−1).(bPT )T . 
This helps image retrieval faster and also more secure. 
As shown in Deep hashing using ConvNeXt model  sec-
tion, Hi will be generated from the medical image Mi . 

(11)Ltotal_loss = Lcont + φLquant + χLbit

The length of the hashcode is d. Using the random num-
ber ǫ1, ǫ2 in KI , Hi is expanded to the vector x̂i with the 
dimension of d + 3 as follows:

Then, the x̂i is encrypted using the inverse of reversible 
matrix P as in Eq. 13.

Finally, the encrypted index EIi is sent with Ei to the 
CS to store in an encrypted indexed database. Algo-
rithm  3 shows the step-by-step process of secure index 
generation.

(12)x̂i =





d
�

j=1

h2ij + ǫ1 − ǫ2, hi1, hi2, ..., hid , 1, ǫ2





(13)EIi ← x̂i.P
−1

Algorithm 3 SecIndexGen 

Secure image retrieval
In the secure image retrieval phase, the authorized medi-
cal image user MIU creates the search trapdoor and 
sends it to the cloud for similar image retrieval. The fol-
lowing subsections detail trapdoor generation, secure 
similar image search, and image decryption.

Trapdoor generation
The medical image owner MIO generates an encrypted 
search trapdoor using Algorithm  4 on the client side. 
Both query medical image MQ and query trapdoor 
generation key KQ are required. The query image 
image hashcode HQ is generated using the proposed 
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ConvNeXt-based deep hashing module explained in 
Deep hashing using ConvNeXt model  section. The d 
dimensional hashcode is expanded into (d + 3) dimen-
sional vector using ω as follows:

(14)ŷq = (1,−2hq1,−2hq2, ...,−2hqd ,ω, 1)

The trapdoor is encrypted using the invertible matrix P 
and produces TDQ as shown in Eq. 15. Finally, the TDQ is 
sent to the cloud for searching.

(15)TDQ ← ŷq .P
T

Algorithm 4 TrapdoorGen 

Secure similar image search over encrypted indexes
The cloud server receives the TDQ and searches over 
the encrypted index database EI and returns the similar 
images result set EQ , which are encrypted to the MIU. 

Algorithm  5 shows a secure similar image search. The 
retrieval process loops until the whole image collection 
is traversed.

Algorithm 5 SecSimSearch 



Page 14 of 30Amaithi Rajan et al. Journal of Cloud Computing          (2024) 13:139 

The proof of correctness is given in Eq. 16. θ is the dis-
tance between the query hashcode HQ and ith hashcode 
in the encrypted index ( Hi).

In the proof, 
(

∑d
j=1 h

2
qj − ǫ1 − ω

)

 term will not have 
an impact on the final search result. This term will be 
negligible. Therefore, it is shown that the similarity 
metric between encrypted hashcodes is equivalent to 
plain hashcodes, and the distance of the encrypted 
domain is proportional to the plaintext domain from 
Eq.  16. The Euclidian distance between Hi,HQ is 
expressed in Eq. 17. The proposed encrypted indexing 
and retrieval scheme has been demonstrated in Appen-
dix  A with a working example showing proof of the 
working model.

Image decryption
Cloud servers return only retrieved encrypted images EQ 
to MIU. The users have decryption key KS at their end to 
decrypt the retrieved images. Decryption is the reverse 
flow of encryption shown in Algorithm  2. In addition, 
the integrity check takes place. At the time of decryp-
tion, unique SHA-512 hash-based bit-plane verification 
takes place to ensure the decrypted image’s integrity. If 
the bit planes match, the decryption process will pro-
ceed to step 5, and the decrypted image will be generated 

(16)

D = EIi.TDQ

= (x̂i.P
−1).(ŷq .P

T )T

=





d
�

j=1

h2ij + ǫ1 − ǫ2, hi1, hi2, ..., hid , 1, ǫ2



.(1,−2hq1,−2hq2, ...,−2hqd ,ω, 1)
T

=

d
�

j=1

h2ij + ǫ1 + ω − 2hi1hq1 − 2hi2hq2 − ...− 2hidhqd

=

d
�

j=1

h2ij − 2

d
�

j=1

hijhqj + ǫ1 + ω

=

d
�

j=1

(hij − hqj)
2 +





d
�

j=1

h2qj − ǫ1 − ω





= Hi.H
T
Q +





d
�

j=1

h2qj − ǫ1 − ω





= θ + constant

(17)θ = dist(Hi,HQ) =

d
∑

j=1

(hij − hqj)
2

and added to S . Otherwise, a random cipher image will 
be added into S . When the attacker tries to guess the key 
by encrypting the same image with the same wrong key 

twice, the attacker will get two different random cipher 
images, which confuses the attacker. There could not 
be any pattern to guess the key. The proposed scheme 
is IND-CPA secure. So, information leakage of medical 
image data is prevented successfully.

Security and privacy model
In the proposed system, there is an assumption that CS 
which is “honest and curious” and malicious users. The 
system has to ensure that the ciphertext does not leak any 
critical information to them. For that, the security model 
of the system requires that no adversary can distinguish 
ciphertext. The authors introduce a security game to 
define the security model based on the ciphertext indis-
tinguishable under a chosen plaintext attack (IND-CPA), 
mainly referring to two participants, challenger C and 
adversary A . The concrete description is as follows:

– Adversary A: Chooses two different medical images 
M0 , M1 ∈ M and hashcodes H0 , H1 ∈ H to send it 
to challenger C

– Challenger C: Chooses random r ← {0,1} and computes 
the challenged ciphertext images Er ← ImgEnc(Mr ,KS) and 
encrypted index EIr ← SecIndexGen(Hr ,KI ) . Send them to 
A.

– Adversary A: Outputs the guess r′ ∈ {0,1}.
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Either adversary wins the game or loses. So, the advan-
tage of A can be defined as,

The adversary repeats the process. The index encryp-
tion proposed in this system is IND-CPA secure if 
ADV IND−CPA is negligible for any adversary A . In the 
system, the operations are performed as specified in the 
protocol definitions. At the same time, the adversary can 
do some extra analyses to extract any meaningful infor-
mation regarding the data set and queries.

Definition 1 (Index Privacy): No polynomial time 
adversary can decrypt the secure searchable encrypted 
index EI.

Definition 2 (Query Privacy): No polynomial time 
adversary can decrypt a secure search query TDQ.

Definition 3 (Image Privacy): No polynomial time 
adversary can recover sensitive information, including 
encryption keys or image content, from the timing infor-
mation of cryptographic operations.

All these claims will be proved with a solution given in 
the subsequent section. The security analysis section of 
this article will explain the theories that prove the claims.

Security and privacy analysis
This section is dedicated to analyzing the security and 
privacy of the proposed image encryption model and 
secure index encryption model. The image encryption 
model is analyzed from various perspectives to prove its 
security. The image encryption model demonstrates side-
channel attack prevention. Index and query privacy are 
theoretically proven.

Index privacy analysis

Theorem  1 The SMedIR provides confidentiality for 
the index EI of a medical dataset M in accordance with 
Definition 1.

Proof The hashcodes are encrypted using the expanded 
random vector x̂ and the invertible matrix P−1 , which is 
randomly generated to secure the contents of the hash-
code. The secure indexing is impacted by P−1 and ran-
dom numbers ǫ1, ǫ2 . Because of the random number’s 
indistinguishability, the same hashcode produces differ-
ent indexes under the same key; thus, adversary A can-
not obtain any information about the plain hashcode 

(18)ADV IND−CPA =

∣

∣

∣

∣

Pr[r′ = r] −
1

2

∣

∣

∣

∣

in a polynomial time. This guarantees the safety of the 
generated content-based hashcodes. It is known that the 
random reversible matrix P−1, ǫ1, ǫ2 are chosen from the 
cyclic group Zα . Let |α| be the number of elements in Zα , 
then the probability advantage of adversary A winning 
the game as defined in Eq. 18 is:

The advantage probability of adversary A is negligible, 
so the proposed SMedIR is IND-CPA secure. No polyno-
mial-time adversary A can decrypt the secure searchable 
encrypted index.   �

Query privacy analysis

Theorem  2 The SMedIR provides confidentiality for 
encrypted query TDQ in accordance with Definition 2.

Proof The medical image user always randomly selects 
a number ω to expand the query image hashcode HQ into 
ŷ . MIU uses the random reversible matrix P to encrypt 
the ŷ . The random number ω and P are indistinguishable. 
Therefore, several search trapdoors TDQ can be gener-
ated for the same query image MQ . Even if adversary A 
gets the TDQ , A cannot deduce the information about ω 
and P from TDQ . Therefore, query privacy is protected, 
the query pattern is successfully hidden, and no informa-
tion about the query image MQ is obtained.   �

Search privacy analysis

Theorem  3 The SMedIR provides confidentiality for 
secure similar image search.

Proof The honest and curious CS knows the opera-
tion for search, which is EIi.TDQ yielding D. From the 
operation, CS cannot obtain any information about the 
data. From the Theorem 1, secure index EIi is IND-CPA 
secure. From the Theorem 2, TDQ is IND-CPA secure.

θ contains terms derived from the plaintext hashcode Hi 
and the query hashcode HQ but also contains random 
numbers ǫ1, ǫ2,ω . So, it does not reveal any information 
about the plaintext image beyond what is already known. 
Therefore, the encrypted representation D does not leak 
any sensitive information about the underlying plaintext 

(19)

ADV IND−CPA =

∣

∣

∣

∣

Pr[r′ = r] −
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1

2
+

1

|α|

)

−
1

2

∣

∣

∣

∣

=
1

|α|

(20)

D = θ + constant = Hi.H
T
Q +





d
�

j=1

h2qj − ǫ1 − ω




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data beyond what is permissible, satisfying the definition 
of search privacy. So, from D, CS cannot derive any sensi-
tive key information about the sensitive images. Thus, the 
search operation itself is IND-CPA secure.

Analysis of the image encryption model
The proposed integrity-centric image encryption scheme’s 
security is evaluated using a number of metrics and proved 
that it is resistant to various cryptographic attacks includ-
ing brute-force attacks, statistical attacks, histogram 
attacks, and differential attacks. Throughout the sub-
section, 6 sample medical images (M1 −M6) are taken 
to show the performance comparison. Figure  7 shows 
the selected sample medical images. The detailed data-
set description is available in Experimental setup and 
datasets section.

Key space and sensitivity analysis
To withstand possible attacks, the encryption algorithm’s 
key space must possess sufficient size  [16]. It should 
be larger than 2128 . The proposed system does have 7 
secret keys. If the precision is 10−14 (i.e., double preci-
sion ( 252)), then the size of key space would be equal to 
252 ∗ 7 = 2364 > 2128 . The findings indicate that the 
method is significantly resilient to brute-force attacks 
and demonstrate the difficulty of successfully breaching it 
through this method. This model is highly key-sensitive as 

well. If klx varies by 0.001, then the process of decryption 
collapses.

Statistical attack analysis
The statistical properties of the image are depicted 
through the histogram. It counts the number of pixels 
and primarily displays the distribution of pixel values 
within the image. The histogram of an image will be flat 
when all of the pixel value numbers are almost equal. This 
demonstrates its strong resistance to statistical attacks. 
The histograms of sample plain images (M1,M3,M5) are 
shown in Fig. 8a-c. The corresponding image’s encrypted 
image histograms are displayed in Fig. 8d-f. The pixel val-
ues in the cipher image are uniformly distributed. This 
experiment demonstrates how the grey value distribu-
tion in the original image can be effectively hidden by the 
cipher image. It protects the data from histogram-based 
attacks.

An indicator for assessing an image’s randomness is 
image correlation. The nearby pixels in a plain image had 
a strong correlation [46]. Encrypting the plain image may 
result in an increase in pixel variance. In image analysis, 
there are three correlation coefficients: horizontal, verti-
cal, and diagonal. Equations 21-24 can be used to get the 
correlation coefficient of an image in any direction.

(21)E(x) =
1

n
�n

i=1xi

Fig. 7 Selected sample medical images
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Fig. 8 Histogram analysis

Fig. 9 Correlation analysis ( M4)
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Figure 9a-f clearly project the randomness in Horizontal, 
Vertical, and Diagonal directions of the plain and encrypted 
image M4 . The correlation coefficients for horizontal, verti-
cal, and diagonal directions are presented in Table 4, dem-
onstrating the statistical attack resistance of the proposed 
encryption scheme on the selected sample medical images.

Differential attack analysis
The sensitivity of the encryption technique to even the 
smallest change in the plain image is evaluated using 
the differential attack. The Number of Pixel Change 
Rate (NPCR) and Unified Average Change in Inten-
sity (UACI) are the two most important performance 
metrics to assess the proposed technique’s resistance 
to differential attacks [47]. NPCR determines the pixel 
rate in the encrypted images whenever a single pixel 
of the test image is modified. It is employed to evalu-
ate the resistance to differential attack. Its ideal value is 

(22)D(x) =
1

n
�n

i=1(xi − E(x))2

(23)cov(x, y) =
1

n
�n

i=1(xi − E(x))(yi − E(y))

(24)ρxy =
cov(x, y)

D(x)D(y)

greater than 99%. NPCR is calculated using the follow-
ing Equations:

Here,

where W and H represent the width and height of the 
image, respectively. Diff(x,  y) indicates the difference 
between the corresponding pixels of the original medical 
image M and the encrypted medical image E.

UACI is the average difference in pixel intensity 
between the original and encrypted image. It is yet 
another commonly employed efficiency indicator for 
evaluating the capacity to withstand a differential 
attack. For UACI, a value of approximately 33% is opti-
mal. It is calculated based on the following Equation:

Table  5 shows the UACI and NPCR of the selected 
sample images in the proposed system and proves the 
withstanding power of the proposed encryption model. 
The extended statistical security and comparative anal-
ysis have been shown in Appendix B.

Side channel attack prevention
If the attacker gets the timing information of the secu-
rity operations, they could deduce the key length, pro-
cess length, etc. So, in the proposed model, this attack 
could not be succeeded as the introduced noise in the 
time. This is proved in the Theorem 4.

Theorem  4 For the proposed integrity-centric image 
encryption scheme, it is computationally infeasible for a 

(25)NPCR =
�x,yDiff (x, y)

W ×H
× 100%

(26)Diff (x, y) =

{

1, ifM(x, y) equals E(x, y)
0, ifM(x, y) not equals E(x, y)

(27)UACI =
�x,yM(x, y)− E(x, y)

255×W ×H
× 100%

Table 4 Correlation analysis

Image Horizontal correlation Vertical correlation Diagonal correlation

Original Encrypted Original Encrypted Original Encrypted

M1 0.9544 -0.005 0.8151 0.0055 0.9923 0.1237

M2 0.8853 -0.0006 0.8079 -0.0013 0.9964 -0.0027

M3 0.9905 -0.0058 0.9193 0.0024 0.9840 -0.0315

M4 0.9931 -0.0076 0.9459 0.0052 0.9809 -0.0054

M5 0.9844 0.0074 0.9803 0.0003 0.9857 0.1331

M6 0.9919 0.0061 0.9804 -0.0005 0.9916 0.1455

Table 5 Differential attack analysis

Image NPCR UACI

M1 99.71 32.48

M2 99.72 33.88

M3 99.67 33.68

M4 99.68 33.87

M5 99.73 33.92

M6 99.72 33.31
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polynomial-time adversary to recover sensitive informa-
tion, such as encryption keys or image content, solely from 
the timing information of cryptographic operations in 
accordance with Definition 3.

Proof Let’s consider a cryptographic operations OPc 
which performs encryption or decryption by taking the 
input M and key K. The execution time of the operation 
is TOPc . ǫ is the random variable that represents the noise 
added to the execution time. The noisy execution time 
T ′
OPc

 is represented by,

To achieve differential privacy (DP), need to ensure 
that the noisy execution time satisfies the definition of 
DP, which states that for any pair of inputs M1 and M2 
differing in a single data point, the probability distribu-
tions of the outputs should be similar. Mathematically, 
this can be expressed using the ǫ-DP definition.

Here M is a mechanism that takes inputs from the 
dataset and produces outputs, in this case, which is a 
cryptographic operation, either encryption or decryp-
tion. M satisfies ǫ -DP if for all pairs of neighboring data-
sets D1,D2 that differ a single data point, and for all sub-
sets of possible outputs S. The output is T ′

OPc
 . The noise ǫ 

should be sufficient to mask any correlation between the 
execution times and sensitive data while preserving the 
utility of the cryptographic operations.

Experimental results and performance analysis
The analysis in this section focuses on effective retrieval 
performance and is dedicated to demonstrating the 
results of the proposed SMedIR through experiments. 
The structure of this section is structured as follows: an 
explanation of the dataset with details on the experimen-
tal setup and results, an analysis of retrieval accuracy, and 
an assessment of retrieval time.

Experimental setup and datasets
The designed system was carried out on a PC with an 
Intel Xeon processor, 64 GB RAM, an NVIDIA Quadro 
P5000 GPU with 16 GB of memory, and a 64-bit Windows 
operating system. Python OpenCV libraries and Keras 
have been used in the development of the entire system. 
To experiment and evaluate the proposed retrieval model, 
three different medical image datasets are chosen. Details 
of the dataset have been explained briefly here,

(28)T ′
OPc

= TOPc + ǫ

(29)Pr[M(D1) ∈ S] ≤ exp(ǫ).Pr[M(D2) ∈ S]

• Pneumonia Chest X-Ray Dataset (C-XRay) [48]: 
The dataset comprises 5,863 Chest X-Ray images 
categorized into Pneumonia and Normal classes, 
sourced from pediatric patients aged one to five 
years at Guangzhou Women and Children’s Medi-
cal Center. Quality control measures were applied, 
and diagnoses were graded by two expert physi-
cians before training the system. A third expert 
independently reviewed the evaluation set to 
ensure accuracy.

• Lung Cancer CT Dataset (L-CT) [49]: The Iraq-
Oncology Teaching Hospital/National Center for 
Cancer Diseases (IQ-OTH/NCCD) lung cancer 
dataset was collected over three months in fall 2019 
from specialist hospitals. It includes CT scans from 
patients with lung cancer in different stages and 
healthy subjects, totaling 1190 images from 110 
cases. The dataset, marked by oncologists and radi-
ologists, categorizes cases into three classes: normal, 
benign, and malignant, with 40 malignant, 15 benign, 
and 55 normal cases.

• Alzheimer Brain MRI Dataset (B-MRI) [50]: The 
dataset comprises two files, Training and Testing, 
each containing approximately 5000 images. These 
images are categorized based on the severity of 
Alzheimer’s disease into the following classes: Non 
Demented, Very Mild Demented, Mild Demented, 
and Moderate Demented.

The X-ray, CT, and MRI images are chosen for the 
retrieval task to illustrate the versatility and efficacy 
of the model across different imaging techniques, 
highlighting its adaptability and reliability in various 
clinical contexts. The datasets are divided into train-
ing and testing sets at an 80:20 ratio. Retrieval accu-
racy is assessed on a randomly sampled subset of 1000 
images during testing. In the proposed system, medi-
cal images are encrypted and outsourced to the cloud 
with encrypted indexes. When the query image is given 
to the cloud, a secure similar image search algorithm 
searches over the encrypted index table and returns 
the top-k medical images. Figure  10 displays sample 
obtained top-k images for each encrypted query image 
from various datasets. Column 2 shows the query 
images for each class, whereas Column 1 shows the 
dataset of the chosen query image. columns 3-7 show 
the images retrieved as similar to the query. In the 
retrieved results, the exact query image retrieved is 
highlighted with a green border, while completely irrel-
evant class images, which reduce precision, are high-
lighted with a red border.
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Retrieval performance analysis
In order to evaluate the proposed SMedIR which is a 
secure medical image retrieval system, selected two 
metrics Mean Average Precision, and PR Curve (ROC) 
Analysis. The proposed method has been tested with 
three different medical datasets and compared with 

four previous state-of-the-art secure image retrieval 
models IES-CBR  [51], LBP-BOW  [34], VFIRM  [37], 
and TAMMIA [36] as baseline models. Top-k retrieved 
images are used to estimate the retrieval accuracy. 
Image retrieval accuracy can be measured using Pre-
cision (Pr@k), Recall (Re@k), and Mean Average 

Fig. 10 Sample retrieval results: Query image is in column 2 and top-5 retrieved results for that query in subsequent columns. The most relevant 
retrieved image is highlighted in green border and the most irrelevant retrieved image is highlighted in red border
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Precision (mAP@k) metrics. Precision refers to the 
ratio of relevant retrieved images to the total number of 
retrieved images in relation to the query image.

Recall denotes the proportion of relevant retrieved 
images to the query image, considering the number of 
identical images in the entire dataset.

Mean Average Precision (mAP) is the standard meas-
ure for assessing and comparing the accuracy of image 
retrieval. The calculation of mAP can be performed using 
the Equation below.

Here, R is a number of queries, qm is a number of rele-
vant images for query n and the Prn is precision at nth rel-
evant image. For the hashcode generation, the ConvNeXt 
network is used for feature extraction, and the contras-
tive loss is primarily used for learning. The hashcode is 
then encrypted using SE before outsourcing. ConvNeXt 
model is used because it extracts both local and global 
features better than other pre-trained DL models. This 
leads to the production of more meaningful hashcodes 
than other models. The experiment was carried out with 
different deep hashing models and finally the ConvNext, 
the best backbone model was chosen. When the hash-
codes are generated with other backbone networks and 
encrypted with the proposed SE model, they produce 
less retrieval accuracies in all medical datasets. This leads 
the authors to choose the ConvNeXt-based deep hash-
ing for better-encrypted image retrieval. Table  6 shows 
the comparative analysis. For the comparison, 4 dif-
ferent deep hashing models: UDTH  [26], CDHN  [27], 

(30)Pr =
|relevant images ∩ retrieved images|

|retrieved images|

(31)Re =
|relevant images ∩ retrieved images|

|total relevant images in the dataset|

(32)mAP =
1

R

R
∑

m=1

(

1

qm

qm
∑

n=1

Prn

)

IFFH [28], IPH [29] are taken. During the comparison of 
models, changes are made to the backbone and loss func-
tions, but the encrypted indexing remains as  proposed 
in our model. The details of the models are explained in 
Appendix C.

Hashcode is generated as illustrated in Fig. 6. The Con-
vNeXt network is designed to propagate cumulative loss, 
combining contrastive loss, quantization loss, and bit bal-
ance loss. The objective is to generate a discriminative 
hashcode while minimizing the loss defined in Eq.  11. 
The network undergoes training for hashcodes of lengths 
16, 32, 64, and 128 bits for each dataset separately. Over 
epochs, the training loss is depicted in Fig.  11a-c. As 
epochs increase, the total loss decreases.

Randomly selected 1000 samples from each medi-
cal dataset are used for the analysis of retrieval accuracy. 
The experimental results of the proposed model, includ-
ing mAP values across three datasets with varying hash-
code lengths and different values of k, are documented in 
Table 7. Figure 12 illustrates the impact of hashcode length 
on image retrieval accuracy using mAP@100. The observa-
tion indicates that the 32-bit hashcode yields the highest 
retrieval accuracy. With less number of bits, the hashcodes 
are not able to capture the features with respect to classes. 
However, when the number of bits is high then the hash-
codes get sparsed, and submerged into different classes. In 
our model, 32 bits provide better results. From Table 7, it 
is observable that the authors have tested the performance 
at different k values as well. When the k is less then the 
performance is better. A decrease in mAP with increasing 
k values in top-k retrieval suggests that the retrieval sys-
tem’s precision decreases when more images are retrieved 
(higher k values). Possible contributing aspects to this phe-
nomenon include the dispersion of relevant items, chal-
lenges in discerning relevant from irrelevant images, or 
intrinsic features present in the medical image data. From 
the analysis, the d=32 and k=100 are fixed to compare 
SMedIR framework with other baseline models.

To underscore the effectiveness of the method, Preci-
sion curves at k retrieved images (P@k) and Precision-
Recall (PR) curves are produced across three datasets. 
While outcomes may differ across various domain 
datasets, P@k curves depict precision at fixed num-
bers of retrieved images. Figure  13 illustrates the P@k 
curve for all datasets, demonstrating that SMedIR con-
sistently attains superior precision compared to other 
methods across all three datasets, notably excelling in 
the case of L-CT. At k=100, with C X-ray images, our 
model exhibits a 25% improvement over IES-CBR and 
a 14% enhancement compared to VFIRM. Both IES-
CBR and LBP-BOW achieve identical mAP @ 500 
scores. On average, across the X-ray image dataset, our 
model surpasses TAMMIE, the latest encrypted image 

Table 6 Comparative analysis of deep hashing models

mAP @ 100

Name Backbone Net Loss used C-XRay L-CT B-MRI

UDTH [26] VGG-16 Triplet Loss 0.61 0.62 0.58

CDHN [27] ResNet50 Reconstruction 
Loss

0.65 0.68 0.64

IFFH [28] DenseNet121 Binary Cross 
Entropy Loss

0.68 0.74 0.67

IPH [29] DenseNet201 Binary Cross 
Entropy Loss

0.71 0.76 0.66

Ours ConvNeXt Contrastive Loss 0.75 0.81 0.72
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Fig. 11 Hashcode learning: training loss
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retrieval model, by 5%, and IES-CBR by 24%. In Lung 
Cancer CT images, SMedIR demonstrates superior per-
formance, showcasing differences ranging from 5.9% to 
19.8% compared to other models. Despite lower MRI 
image quality, our model excels in capturing features, 
leading to a higher mAP @ 100 score of 72%, surpassing 
IES-CBR by 27%. Additionally, our model exhibits sub-
stantial performance improvements ranging from 6.8% 
to 21.8% in the Brain MRI images dataset. Within the 
B-MRI dataset, our curves exhibit slight superiority over 
TAMMIE’s, particularly noticeable when the count of 
retrieved images is under 800. This finding underscores 

our approach’s efficacy in retrieving a greater number of 
accurate images compared to alternative methods, par-
ticularly evident with a constrained retrieval quantity, 
affirming its suitability for image retrieval tasks.

The Precision-Recall (PR) curve is a vital metric 
for contrasting the proposed methods with baseline 
approaches, providing a comprehensive view of pre-
cision and recall across various retrieval scenarios. It 
offers valuable insights into system performance across 
different sensitivity levels. A larger area under the PR 
curve typically indicates a more effective retrieval sys-
tem capable of maintaining a balance between preci-
sion and recall. As demonstrated in Fig. 14, our method 
consistently outperforms other methods across all PR 
curves.

The summary of the retrieval accuracy is tabulated in 
Table  8. The table indicates that X-ray and CT images 
exhibit better retrieval accuracy compared to MRI 
images. This discrepancy can be attributed to various 
factors  [52]. X-ray images focus on capturing density 
variations in bones and tissues, which may contribute to 
their superior performance in retrieval tasks. Conversely, 
while MRI images provide high-resolution details of soft 
tissues, their overall image quality may not be conducive 
to accurate feature extraction and deep hashing tech-
niques. Additionally, CT images, combining X-ray with 
computer processing, offer a balanced view of both bones 
and soft tissues, contributing to their improved retrieval 
accuracy. Therefore, in this deep hashing-based retrieval, 
X-ray images are likely to outperform MRI images due to 
their more favorable characteristics for feature represen-
tation and extraction. Through a comprehensive analy-
sis across diverse conditions on three distinct medical 
datasets and benchmarking against four baseline models 

Table 7 Detailed retrieval results: three different dataset retrieval 
mAPs are compared under varying conditions

Medical Dataset SMedIR

Hash Code 
Length

16b 32b 64b

k

C-XRay 100 0.69 0.75 0.72

200 0.65 0.70 0.69

500 0.55 0.65 0.64

800 0.45 0.60 0.56

L-CT 100 0.71 0.80 0.76

200 0.65 0.72 0.71

500 0.59 0.69 0.61

800 0.52 0.60 0.55

B-MRI 100 0.65 0.72 0.66

200 0.64 0.69 0.58

500 0.53 0.57 0.51

800 0.45 0.41 0.48

Fig. 12 Hashcode length vs mAP@100
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Fig. 13 Top k retrieved results vs mAP (P@k Curves)
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Fig. 14 PR curves for all datasets
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using various performance metrics, the authors assert 
that the proposed model consistently outperforms other 
existing models in terms of retrieval accuracy.

Search time analysis
This work considers a linear index. Thus the time con-
sumption is linear to the size of the image set and the 
dimension of the feature vector, as shown in Fig.  15. 
SMedIR is compared with LBP-BOW and shows an 
improvement of 10x times. For 1000 images, LBP-BOW 
takes 0.1s whereas our model takes 0.01s as it compares 
only encrypted hashcodes.

Conclusion
Medical images stored on third-party cloud platforms 
were vulnerable to multiple attacks, leading to poten-
tial information leakage. Given the high sensitivity of 
medical images, secure storage and retrieval in digi-
tal healthcare were imperative. This paper proposed 
SMedIR, a system designed to ensure better retrieval 
efficiency, privacy, and integrity of medical images. 
To achieve robust security and high retrieval accu-
racy, an integrity-centric image encryption scheme 

was employed for secure medical image storage. Addi-
tionally, ConvNeXt-based indexing with searchable 
encryption was used for efficient and secure image 
retrieval. The encryption scheme’s security was thor-
oughly verified and validated through various experi-
ments, including histogram analysis, differential attack 
analysis, entropy analysis, and key sensitivity analysis. 
Theoretical proofs for index privacy and query privacy 
were also provided. The performance of SMedIR was 
evaluated using accuracy metrics and search time, and 
it was compared with existing secure image retrieval 
models. Future work could involve introducing a tree-
based encrypted index to further enhance performance 
measures.

Appendix A: Proof of working model
In this subsection, the toy example has been taken to 
demonstrate how SMedIR works. The public param-
eters are α = 3, d = 2,Gcy , which is a multiplicative 
cyclic group with order 3. KeyGen generates KI ,KQ 
from the parameters. The matrix P and P−1 of dimension 
(d + 3)× (d + 3) which is 5× 5 from Gcy are,

Table 8 Retrieval accuracy mAP@100: comparison with baseline models

mAP @ 100

Name Security level Method C-XRay L-CT B-MRI

IES-CBR [51] Adaptive Secure Encrypted images as indexes 0.49 0.52 0.45

LBP-BOW [34] COA and KBA Secure Local Binary Pattern and Bag-of-Words 0.52 0.54 0.53

VFIRM [37] Non-adaptive Semantic Secure Verifiable Homomorphic encryption with Access control 0.61 0.63 0.59

TAMMIE [36] IND-KPA Secure Mahalanobis distance based Fuzzy C-Means 0.7 0.74 0.68

SMedIR (Ours) IND-CPA Secure ConvNext-based indexing with searchable encryption 0.75 0.8 0.72

Fig. 15 Search time analysis
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As P is invertible matrix, PP−1 = P
−1

P = I . If MIO are out-
sourcing 4 images with hashcodes [0, 0], [0, 1], [1, 0], [1, 1], 
Firstly, the hashcodes are expanded into a hashcode with 
dimension 5 using random numbers ǫ1 = 0, ǫ2 = 1 . These 
are all the corresponding x̂i of Hi . Then each x̂i is multiplied 
with P−1 to get the secure indexes EIi . Table  9 shows the 
secure indexing process of all hashcodes. The secure indexes 
are offloaded to the cloud with corresponding encrypted 
images Ei . If an authorized image user wants to search the 
image with hashcode HQ = [1, 1] . Then, the trapdoor is gen-
erated using ω = 2 and P. First, HQ is expanded as shown in 
Eq. 14: ŷ = [1,−2,−2, 2, 1] . Then ŷq is multiplied with PT to 
get TDQ = [2, 3,−3, 0,−1] . This TDQ is sent to the cloud for 
secure similar image searching. Here, the distance between 
all the encrypted index and the query index is calculated as 
in Eq. 16. Table 10 shows the distance with each encrypted 
index in the cloud with TDQ . Table 10 vividly shows that the 
search fetches [1, 1] as a most similar image, which is the sys-
tem’s goal. If MIU search for an image with hashcode [0, 1] 
then ŷq = [1, 0,−2, 2, 1] and TDQ = [2, 3, 1, 0, 1] . Secure 
search is shown in Table 11. Here also the search algorithm 
fetches the image with hashcode [0, 1] first.

Table 9 Secure indexing

Hi x̂i EIi = x̂i .P
−1

[0, 0] [−1, 0, 0, 1, 1] [1.5,0,1,-1,-2]

[0, 1] [0, 0, 1, 0, 1] [-0.5,0,0,1,0.]

[1, 0] [0, 1, 0, 0, 1] [0.625,-0.25,0.5,0,0]

[1, 1] [1, 1, 1, 0, 1] [-0.5,0,0,1,1]

Table 10 Secure search for [1, 1]

Hi dist(Hi ,HQ = EIi .TDQ) EIi

[0, 0] 2.0 [1.5,0,1,-1,-2]

[0, 1] 1.0 [-0.5,0,0,1,0.]

[1, 0] 1.0 [0.625,-0.25,0.5,0,0]

[1, 1] -2.0 [-0.5,0,0,1,1]

Table 11 Secure search for [0, 1]

Hi dist(Hi ,HQ = EIi .TDQ) EIi

[0, 0] 2.0 [1.5,0,1,-1,-2]

[0, 1] -1.0 [-0.5,0,0,1,0.]

[1, 0] 1.0 [0.625,-0.25,0.5,0,0]

[1, 1] 0.0 [-0.5,0,0,1,1]

P =















0 0 0 0 2

2 0 2 2 1

1 2 1 1 0

0 0 1 0 2

1 1 0 0 0















P
−1 =















−0.125 0.25 −0.5 0 1

0.125 −0.25 0.5 0 0

−1 0 0 1 0

0.875 0.25 0.5 −1 −1

0.5 0 0 0 0















Appendix B: Security analysis of integrity‑centric 
image encryption model
Chi-square test
The chi-square (χ2) test is used to assess the histogram’s 
evenness. It is calculated using the following Eq. 33.

Here the null hypothesis is that “Pixels are evenly dis-
tributed”. Critical value is χ2(255, 0.05) = 293 . If the χ2 
test value is less than 293, then the null hypothesis can be 
accepted. Table 12 shows the χ2 test done over the sam-
ple images.

Table 12 χ2 test

Image χ2 Value Critical value Decision (H=0)

M1 268.53 293 Pass

M2 257.05 293 Pass

M3 278.97 293 Pass

M4 254.36 293 Pass

M5 276.48 293 Pass

M6 292.12 293 Pass

Entropy analysis
Entropy is a term used to describe how unpredictable 
the image information is. E denotes the entropy of the 
image. It is used to assess the uncertainty of the proposed 
encryption technique and calculated using the following 
Eq. 34.

pi denotes the probability of occurrence of pixel value 
i. The value of E ∈ [0, 8] . An 8-bit image should have an 
entropy value close to 8. Table  13 displays the entropy 
values of the selected sample images, indicating that the 
entropy of all encrypted images is in close proximity to 8.

Table 13 Entropy analysis

Entropy

Image Original Encrypted

M1 6.3177 7.9970

M2 5.3486 7.9971

M3 6.9745 7.9969

M4 7.3090 7.9971

M5 7.1528 7.9969

M6 6.9926 7.9968

(33)χ2 = �255
i=0

(Observedi − Expectedi)
2

Expectedi

(34)E = −�255
i=1pilog(pi)
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Error metrics
There are few metrics available to assess the error of the 
encryption model. MAE, RMSE, and PSNR are standard 
metrics to assess whether the encryption scheme pro-
duces acceptable errors. MAE is used to measure the 
difference between encrypted and original images. MAE 
∈ [0, 2n − 1] , where n is the number of bits to represent 
each pixel. For a good encryption model, MAE should be 
maximum. It can be evaluated using Eq. 35.

MSE is useful for comparing exact pixel values between 
an original image and a decrypted image. The error is the 
difference between the original image’s and the decrypted 
image’s pixel values. In order to provide more precise 
and reliable data, RMSE assesses the MSE root. A desir-
able encryption algorithm would yield a minimal RMSE 
value. Equations 36 and 37 can be used to calculate these 
measures.

The range of RMSE ∈ [0,∞] . PSNR is used as a quality 
measurement between the original and decrypted images. 
PSNR is mathematically computed as follows in Eq. 38.

where n represents the number of bits per pixel. PSNR is 
measured in decibels (dB). Table 14 shows the error met-
rics of the sample images in the proposed model.

Table 14 Error metrics

Image MAE RMSE PSNR(dB)

M1 127.86 101.47 8.00

M2 127.80 105.81 7.64

M3 127.38 105.22 7.68

M4 127.34 105.76 7.64

M5 127.86 105.94 7.63

M6 127.41 104.03 7.78

Comparative security analysis
Proposed Integrity-centric image encryption is com-
pared with other existing image encryption models  [16, 
47, 53, 54]. The correlation coefficients, NPCR, UACI, 
and Entropy metrics are taken to compare our proposed 
method with existing encryption models. Table 15 reveals 

(35)MAE =
1

W ×H
�x,y|EM(x, y)−M(x, y)|

(36)MSE =
1

W ×H
�x,y(EM(x, y)−M(x, y))2

(37)RMSE =
√
MSE

(38)PSNR = 10log10
(2n − 1)2

MSE

the better correlations and NPCR of the proposed model. 
Thus the proposed integrity-centric image encryption 
contains DNA-encoding, chaotic maps, and SHA-512 
yields an improved NPCR value and reduces the correla-
tion coefficient among the pixels in the encrypted image.

Table 15 Encryption model: comparative analysis

Reference HCorr VCorr Dcorr NPCR UACI Entropy

Wan et al. [16] 0.0105 0.0020 0.0019 99.61 33.52 7.9971

Khan et al. [47] 0.0008 0.0005 -0.0006 99.62 33.49 7.9990

Brahim 
et al. [53]

0.0007 0.0049 0.0030 99.58 33.49 7.9970

Wang et al. [54] 0.0070 0.0065 0.0067 99.61 33.48 7.9993

Our Model -0.0009 -0.0019 -0.0605 99.70 33.52 7.9972

Appendix C: Baseline models explanation
  

1. Unsupervised Deep Triplet Hashing (UDTH) [26]: A 
novel framework for scalable image retrieval. UDTH 
leverages pseudo triplets based on high-dimensional 
visual features, employing a unique objective func-
tion to maximize binary representation distance 
across classes and preserve structural information 
through Autoencoder and Binary quantization.

2. Class Driven Hashing Network (CDHN) [27]: An effi-
cient framework (CDHN) for indexing and retrieving 
MRI and CT medical images using deep features, aim-
ing for optimal and minimally parameterized hash-
codes. Utilizing a CNN for automatic feature extraction, 
the acquired deep features undergo effective reduction 
for optimal retrieval speed. Feature selection algorithms 
are applied to address the limitations of medical image 
datasets, producing better class-driven hashcodes.

3. Interpretable Feature Fusion based Hashing (IFFH) 
[28]: This approach combines interpretability and 
feature fusion by pre-training a DenseNet-121 net-
work using the comparison to learn (C2L) method. 
An interpretable saliency map is obtained to locate 
focal regions, and features are fused to avoid infor-
mation omission. The model incorporates a hash 
layer with classification and bit-balanced loss func-
tions to generate high-quality hashcodes, improving 
retrieval accuracy.

4. Interpretable Precise Hashing (IPH [29]: It is a pre-
cision hashing method that combines interpretability 
and feature fusion to address the issue of low image 
resolution in brain tumor detection using the Brain-
Tumor-MRI (BT-MRI) dataset. Initially, the pre-
trained the dataset with the DenseNet201 network 
employs the Comparison-to-Learn method.
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